In situ x-ray diffraction measurements of the c/a ratio in the high-pressure epsilon phase of shock-compressed polycrystalline iron

PRB American Physical Society 83:14 (2011) 144114

Authors:

JA Hawreliak, B El-Dasher, H Lorenzana, G Kimminau, A Higginbotham, B Nagler, SM Vinko, WJ Murphy, T Whitcher, JS Wark, S Rothman, N Park

Decay of cystalline order and equilibration during the solid-to-plasma transition induced by 20-fs microfocused 92-eV free-electron-laser pulses.

Phys Rev Lett 106:16 (2011) 164801

Authors:

E Galtier, FB Rosmej, T Dzelzainis, D Riley, FY Khattak, P Heimann, RW Lee, AJ Nelson, SM Vinko, T Whitcher, JS Wark, T Tschentscher, S Toleikis, RR Fäustlin, R Sobierajski, M Jurek, L Juha, J Chalupsky, V Hajkova, M Kozlova, J Krzywinski, B Nagler

Abstract:

We have studied a solid-to-plasma transition by irradiating Al foils with the FLASH free electron laser at intensities up to 10(16)  W/cm(2). Intense XUV self-emission shows spectral features that are consistent with emission from regions of high density, which go beyond single inner-shell photoionization of solids. Characteristic features of intrashell transitions allowed us to identify Auger heating of the electrons in the conduction band occurring immediately after the absorption of the XUV laser energy as the dominant mechanism. A simple model of a multicharge state inverse Auger effect is proposed to explain the target emission when the conduction band at solid density becomes more atomiclike as energy is transferred from the electrons to the ions. This allows one to determine, independent of plasma simulations, the electron temperature and density just after the decay of crystalline order and to characterize the early time evolution.

Decay of Cystalline Order and Equilibration during the Solid-to-Plasma Transition Induced by 20-fs Microfocused 92-eV Free-Electron-Laser Pulses

PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS 14:4 (2011) ARTN 164801

Authors:

E Galtier, FB Rosmej, T Dzelzainis, D Riley, FY Khattak, P Heimann, RW Lee, AJ Nelson, SM Vinko, T Whitcher, JS Wark, T Tschentscher, S Toleikis, RR Faeustlin, R Sobierajski, M Jurek, L Juha, J Chalupsky, V Hajkova, M Kozlova, J Krzywinski, B Nagler

X-ray scattering as a probe for warm dense mixtures and high-pressure miscibility

EPL 94:2 (2011)

Authors:

K Wünsch, J Vorberger, G Gregori, DO Gericke

Abstract:

We develop a new theoretical approach that demonstrates the abilities of elastic X-ray scattering to yield thermodynamic, structural, and mixing properties of dense matter with multiple ion species. The novel decomposition of the electron structure factor in multi-component systems provides the basis to study dense mixtures as found in giant gas planets or during inertial confinement fusion. We show that the scattering signal differs significantly between single species, microscopic mixtures, and phase-separated fluids. Thus, these different phases can be distinguished experimentally via elastic X-ray scattering. © 2011 Europhysics Letters Association.

Simulations of copper single crystals subjected to rapid shear

Journal of Applied Physics 109:6 (2011)

Authors:

A Higginbotham, EM Bringa, J Marian, N Park, M Suggit, JS Wark

Abstract:

We report on nonequilibrium molecular dynamics simulations of single crystals of copper experiencing rapid shear strain. A model system, with periodic boundary conditions, which includes a single dislocation dipole is subjected to a total shear strain of close to 10 on time-scales ranging from the instantaneous to 50 ps. When the system is strained on a time-scale short compared with a phonon period, the initial total applied shear is purely elastic, and the eventual temperature rise in the system due to the subsequent plastic work can be determined from the initial elastic strain energy. The rate at which this plastic work occurs, and heat is generated, depends on the dislocation velocity, which itself is a function of shear stress. A determination of the stress-dependence of the dislocation velocity allows us to construct a simple analytic model for the temperature rise in the system as a function of strain rate, and this model is found to be in good agreement with the simulations. For the effective dislocation density within the simulations, 7.8 10 11 cm - 2, we find that applying the total shear strain on time-scales of a few tens of picoseconds greatly reduces the final temperature. We discuss these results in the context of the growing interest in producing high pressure, solid-state matter, by quasi-isentropic (rather than shock) compression. © 2011 American Institute of Physics.