Erratum: K α fluorescence measurement of relativistic electron transport in the context of fast ignition (Physical Review E (2004) 69 (066414))

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 71:3 (2005)

Authors:

RB Stephens, RA Snavely, Y Aglitskiy, F Amiranoff, C Andersen, D Batani, SD Baton, T Cowan, RR Freeman, T Hall, SP Hatchett, JM Hill, MH Key, JA King, JA Koch, M Koenig, AJ MacKinnon, KL Lancaster, E Martinolli, P Norreys, E Perelli-Cippo, MR Le Gloahec, C Rousseaux, JJ Santos, F Scianitti

Vulcan petawatt: Design, operation and interactions at 5 × 10 20Wcm-2

Laser and Particle Beams 23:1 (2005) 87-93

Authors:

CN Danson, PA Brummitt, RJ Clarke, JL Collier, B Fell, AJ Frackiewicz, S Hawkes, C Hernandez-Gomez, P Holligan, MHR Hutchinson, A Kidd, WJ Lester, IO Musgrave, D Neely, DR Neville, PA Norreys, DA Pepler, CJ Reason, W Shaikh, TB Winstone, RWW Wyatt, BE Wyborn

Abstract:

The Vulcan Nd:glass laser at the Central Laser Facility (CLF) is a petawatt (1015 Watts) interaction facility, designed to deliver irradiance on target of 1021W.cm-2 for the UK and international user community. The facility came online to users in 2002 and considerable experience has been gained operating Vulcan in this mode. The facility delivers a wide-ranging experimental program in fundamental physics and advanced applications. This includes the interaction of ultrahigh intensity light with matter, fast ignition fusion research, photon induced nuclear reactions, electron and ion acceleration by light waves, and the exploration of the exotic world of plasma physics dominated by relativity. We report on the first year's operation of the facility and the highlights of the experimental campaigns. Copyright © 2005 Cambridae University Press.

Electron impact excitation of Al XIII: A relativistic approach*

Astronomy & Astrophysics EDP Sciences 432:3 (2005) 1151-1155

Authors:

KM Aggarwal, FP Keenan, SJ Rose

Vulcan petawatt: Design, operation and interactions at 5 × 1020 Wcm−2

Laser and Particle Beams Cambridge University Press (CUP) 23:1 (2005) 87-93

Authors:

CN DANSON, PA BRUMMITT, RJ CLARKE, JL COLLIER, B FELL, AJ FRACKIEWICZ, S HAWKES, C HERNANDEZ-GOMEZ, P HOLLIGAN, MHR HUTCHINSON, A KIDD, WJ LESTER, IO MUSGRAVE, D NEELY, DR NEVILLE, PA NORREYS, DA PEPLER, CJ REASON, W SHAIKH, TB WINSTONE, RWW WYATT, BE WYBORN

Pseudoresonant laser wakefield acceleration driven by 10.6-μm laser light

IEEE Transactions on Plasma Science 33:1 I (2005) 3-7

Authors:

WD Kimura, NE Andreev, M Babzien, I Ben-Zvi, DB Cline, CE Dilley, SC Gottschalk, SM Hooker, KP Kusche, SV Kuznetsov, IV Pavlishin, IV Pogorelsky, AA Pogosova, LC Steinhauer, A Ting, V Yakimenko, A Zigler, F Zhou

Abstract:

This paper describes an experiment to demonstrate, for the first time, laser wakefield acceleration (LWFA), driven by 10.6-μm light from a CO2 laser. This experiment is also noteworthy because it will operate in a pseudoresonant LWFA regime, in which the laser-pulse-length is too long for resonant LWFA, but too short for self-modulated LWFA. Nonetheless, high acceleration gradients are still possible. This experiment builds upon an earlier experiment called staged electron laser acceleration (STELLA), where efficient trapping and monoenergetic laser acceleration of electrons were demonstrated using inverse free electron lasers. The aim is to apply the STELLA approach of laser-driven microbunch formation followed by laser-driven trapping and acceleration to LWFA. These capabilities are important for a practical electron linear accelerator based upon LWFA. © 2005 IEEE.