Multiple film plane diagnostic for shocked lattice measurements (invited)

REV SCI INSTRUM 74:3 (2003) 1929-1934

Authors:

DH Kalantar, E Bringa, M Caturla, J Colvin, KT Lorenz, M Kumar, J Stolken, AM Allen, K Rosolankova, JS Wark, MA Meyers, M Schneider, TR Boehly

Abstract:

Laser-based shock experiments have been conducted in thin Si and Cu crystals at pressures above the Hugoniot elastic limit. In these experiments, static film and x-ray streak cameras recorded x rays diffracted from lattice planes both parallel and perpendicular to the shock direction. These data, showed uniaxial compression of Si(100) along the shock direction and three.-dimensional compression of Cu(100). In the case of the Si diffraction, there was a multiple wave structure observed, which may be due to a one-dimensional phase transition or a time variation in the shock pressure. A new film-based detector has been developed for these in situ dynamic diffraction experiments. This large-angle detector consists of three film cassettes that are positioned to record x rays diffracted from a shocked crystal anywhere within a full pi steradian. It records x rays that are diffracted from multiple lattice planes both parallel and at oblique angles with respect to the shock direction. It is a time-integrating measurement, but time-resolved data may be recorded using a short duration laser pulse to create the diffraction source x rays. This new instrument,has been fielded at the OMEGA and Janus lasers to study single-crystal materials shock compressed by direct laser irradiation. In these experiments, a multiple wave structure was observed on many different lattice planes in Si. These data provide information on, the structure under compression. (C) 2003 American Institute of Physics.

Proton acceleration from high-intensity laser interactions with thin foil targets

Physical Review Letters 90:6 (2003)

Authors:

M Zepf, EL Clark, FN Beg, RJ Clarke, AE Dangor, A Gopal, K Krushelnick, PA Norreys, M Tatarakis, U Wagner, MS Wei

Abstract:

Experiments were performed to distinguish between the origin of various structures present in the energetic proton signal at the rear of the target in high power laser-solid interactions. Three distinct proton populations that contribute to the signal observed on the detectors were identified.

Proton Acceleration from High-Intensity Laser Interactions with Thin Foil Targets

Physical Review Letters American Physical Society (APS) 90:6 (2003) 064801

Authors:

M Zepf, EL Clark, FN Beg, RJ Clarke, AE Dangor, A Gopal, K Krushelnick, PA Norreys, M Tatarakis, U Wagner, MS Wei

Theoretical model of x-ray scattering as a dense matter probe

Physical Review E 62 (2003) 026412 10pp

Authors:

G Gregori, S. H. Glenzer, W. Rozmus, O. L. Landen

Finite temperature dense matter studies on next-generation light sources

Journal of the Optical Society of America B Optical Physics 20:4 (2003) 770-778

Authors:

RW Lee, SJ Moon, HK Chung, W Rozmus, HA Baldis, G Gregori, RC Cauble, OL Landen, JS Wark, A Ng, SJ Rose, CL Lewis, D Riley, JC Gauthier, P Audebert

Abstract:

The construction of short-pulse tunable soft x-ray free electron laser sources based on the self-amplified spontaneous emission process will provide a major advance in capability for dense plasma-related and warm dense matter (WDM) research. The sources will provide 1013 photons in a 200-fs duration pulse that is tunable from approximately 6 to 100 nm. Here we discuss only two of the many applications made possible for WDM that has been severely hampered by the fact that laser-based methods have been unavailable because visible light will not propagate at electron densities of ne ≥ 1022cm-3. The next-generation light sources will remove these restrictions. © 2003 Optical Society of America.