Experimental platform for the investigation of magnetized-reverse-shock dynamics in the context of POLAR

High Power Laser Science and Engineering Cambridge University Press 6 (2018) e43

Authors:

Gianluca Gregori, B Albertazzi, E Falize, E Falize, A Pelka, F Brack, F Kroll, R Yurchak, E Brambrink, P Mabey, N Ozaki, S Pikuz, L Van Box Som, JM Bonnet-Bidaud, JE Cross, E Filippov, R Kodama, M Mouchet, T Morita, Y Sakawa, RP Drake, CC Kuranz, MJE Manuel, C Li, P Tzeferacos, D Lamb, U Schramm, M Koenig

Abstract:

The influence of a strong external magnetic field on the collimation of a high Mach number plasma flow and its collision with a solid obstacle is investigated experimentally and numerically. The laser irradiation (I ∼ 2 × 1014 W · cm−2 ) of a multilayer target generates a shock wave that produces a rear side plasma expanding flow. Immersed in a homogeneous 10 T external magnetic field, this plasma flow propagates in vacuum and impacts an obstacle located a few mm from the main target. A reverse shock is then formed with typical velocities of the order of 15–20 ± 5 km/s. The experimental results are compared with 2D radiative magnetohydrodynamic simulations using the FLASH code. This platform allows investigating the dynamics of reverse shock, mimicking the processes occurring in a cataclysmic variable of polar type.

Axion-driven cosmic magnetogenesis prior to the QCD crossover

Physical Review Letters American Physical Society 121:2 (2018) 021301

Authors:

Francesco Miniati, G Gregori, B Reville, Subir Sarkar

Abstract:

We propose a mechanism for the generation of a magnetic field in the early Universe during the QCD crossover assuming that dark matter is made of axions. Thermoelectric fields arise at pressure gradients in the primordial plasma due to the difference in charge, energy density, and equation of state between the quark and lepton components. The axion field is coupled to the EM field, so when its spatial gradient is misaligned with the thermoelectric field, an electric current is driven. Because of the finite resistivity of the plasma, an electric field appears that is generally rotational. For a QCD axion mass consistent with observational constraints and a conventional efficiency for turbulent dynamo amplification—driven by the same pressure gradients responsible for the thermoelectric fields—a magnetic field is generated on subhorizon scales. After significant Alfvénic unwinding, it reaches a present-day strength of B ∼ 10 − 13     G on a characteristic scale L B ∼ 20     pc . The resulting combination of B L 1 / 2 B is significantly stronger than in any astrophysical scenario, providing a clear test for the cosmological origin of the field through γ -ray observations of distant blazars. The amplitude of the pressure gradients may be inferred from the detection of concomitant gravitational waves, while several experiments are underway to confirm or rule out the existence of axions.

Observed proton beam induced disruption of a tungsten powder sample at CERN

Physical Review Accelerators and Beams American Physical Society (APS) 21:7 (2018) 073002

Authors:

T Davenne, P Loveridge, R Bingham, J Wark, JJ Back, O Caretta, C Densham, J O’Dell, D Wilcox, M Fitton

Femtosecond x-ray diffraction studies of the reversal of the microstructural effects of plastic deformation during shock release of tantalum

Physical Review Letters American Physical Society 120:26 (2018) 265502

Authors:

M Sliwa, D McGonegle, C Wehrenberg, CA Bolme, PG Heighway, A Higginbotham, A Lazicki, HJ Lee, B Nagler, HS Park, RE Rudd, MJ Suggit, D Swift, F Tavella, L Zepeda-Ruiz, BA Remington, Justin Wark

Abstract:

We have used femtosecond x-ray diffraction to study laser-shocked fiber-textured polycrystalline tantalum targets as the 37–253 GPa shock waves break out from the free surface. We extract the time and depth-dependent strain profiles within the Ta target as the rarefaction wave travels back into the bulk of the sample. In agreement with molecular dynamics simulations, the lattice rotation and the twins that are formed under shock compression are observed to be almost fully eliminated by the rarefaction process.

Observation of Laser Power Amplification in a Self-Injecting Laser Wakefield Accelerator

Physical Review Letters 120:25 (2018)

Authors:

MJV Streeter, S Kneip, MS Bloom, RA Bendoyro, O Chekhlov, AE Dangor, A Döpp, CJ Hooker, J Holloway, J Jiang, NC Lopes, H Nakamura, PA Norreys, CAJ Palmer, PP Rajeev, J Schreiber, DR Symes, M Wing, SPD Mangles, Z Najmudin

Abstract:

© 2018 American Physical Society. We report on the depletion and power amplification of the driving laser pulse in a strongly driven laser wakefield accelerator. Simultaneous measurement of the transmitted pulse energy and temporal shape indicate an increase in peak power from 187±11 TW to a maximum of 318±12 TW after 13 mm of propagation in a plasma density of 0.9×1018 cm-3. The power amplification is correlated with the injection and acceleration of electrons in the nonlinear wakefield. This process is modeled by including a localized redshift and subsequent group delay dispersion at the laser pulse front.