Direct observation of steps in rotation of the bacterial flagellar motor
Nature 437 (2005) 916-919
Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication.
Science 310:5754 (2005) 1661-1665
Abstract:
Practical components for three-dimensional molecular nanofabrication must be simple to produce, stereopure, rigid, and adaptable. We report a family of DNA tetrahedra, less than 10 nanometers on a side, that can self-assemble in seconds with near-quantitative yield of one diastereomer. They can be connected by programmable DNA linkers. Their triangulated architecture confers structural stability; by compressing a DNA tetrahedron with an atomic force microscope, we have measured the axial compressibility of DNA and observed the buckling of the double helix under high loads.Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio.
Nature 403:6768 (2000) 444-447
Abstract:
Rotation of the bacterial flagellar motor is driven by an ensemble of torque-generating units containing the proteins MotA and MotB. Here, by inducing expression of MotA in motA- cells under conditions of low viscous load, we show that the limiting speed of the motor is independent of the number of units: at vanishing load, one unit turns the motor as rapidly as many. This result indicates that each unit may remain attached to the rotor for most of its mechanochemical cycle, that is, that it has a high duty ratio. Thus, torque generators behave more like kinesin, the protein that moves vesicles along microtubules, than myosin, the protein that powers muscle. However, their translation rates, stepping frequencies and power outputs are much higher, being greater than 30 microm s(-1), 12 kHz and 1.5 x 10(5) pN nm s(-1), respectively.Towards a perfusion system for functional study of membrane proteins with independent control of the electrical and chemical transmembrane potential
Biophysical Reviews Springer Nature (2025) 1-9
Abstract:
The main motivation of this work was to address the challenge of single-molecule functional study of membrane proteins under stable and independently controlled electrical and chemical membrane potentials. Although transmembrane potential is often essential for the function of membrane proteins, current in vitro systems provide only limited options for studying them under biologically relevant conditions. Our experimental assay is based on the droplet-on-hydrogel bilayer technique (Leptihn et al. Nat Protoc 8:1048–1057, 2013), where a lipid bilayer forms between a sub-millimetre water droplet and a thin hydrogel layer on a glass cover slip, enabling high-resolution microscopy in total internal reflection mode. To extend the application of this assay beyond channels to other membrane proteins, we introduce a custom-built, electronically controlled perfusion system that is designed to directly connect to the droplet above the lipid bilayer. This system can supply a stable voltage to the bilayer and is suitable for delivery of fragile membrane proteins embedded in proteoliposomes via charged fusion (Ishmukhametov et al. Nat Commun 7:13025, 2016), introducing changes of chemical potentials, and timed introduction of labels or substrate into the droplet. This work represents one of the steps towards single-molecule functional study of F1Fo ATP synthase under variable transmembrane potentials. High-resolution single-molecule observation of its rotation steps on the microsecond timescale could provide valuable insights into the mechanisms of energy transport across the molecule.Redshift tomography of the kinematic matter dipole
Physical Review D American Physical Society (APS) 111:12 (2025) 123547