Universal features in panarthropod inter-limb coordination during forward walking
Integrative and Comparative Biology Society for Integrative and Comparative Biology 61:2 (2021) 710-722
Abstract:
Terrestrial animals must often negotiate heterogeneous, varying environments. Accordingly, their locomotive strategies must adapt to a wide range of terrain, as well as to a range of speeds to accomplish different behavioral goals. Studies in Drosophila have found that inter-leg coordination patterns (ICPs) vary smoothly with walking speed, rather than switching between distinct gaits as in vertebrates (e.g., horses transitioning between trotting and galloping). Such a continuum of stepping patterns implies that separate neural controllers are not necessary for each observed ICP. Furthermore, the spectrum of Drosophila stepping patterns includes all canonical coordination patterns observed during forward walking in insects. This raises the exciting possibility that the controller in Drosophila is common to all insects, and perhaps more generally to panarthropod walkers. Here, we survey and collate data on leg kinematics and inter-leg coordination relationships during forward walking in a range of arthropod species, as well as include data from a recent behavioral investigation into the tardigrade Hypsibius exemplaris. Using this comparative dataset, we point to several functional and morphological features that are shared among panarthropods. The goal of the framework presented in this review is to emphasize the importance of comparative functional and morphological analyses in understanding the origins and diversification of walking in Panarthropoda.Molecular structure of the intact bacterial flagellar basal body.
Nature microbiology 6:6 (2021) 712-721
Abstract:
The bacterial flagellum is a macromolecular protein complex that enables motility in many species. Bacterial flagella self-assemble a strong, multicomponent drive shaft that couples rotation in the inner membrane to the micrometre-long flagellar filament that powers bacterial swimming in viscous fluids1-3. Here, we present structures of the intact Salmonella flagellar basal body4, encompassing the inner membrane rotor, drive shaft and outer-membrane bushing, solved using cryo-electron microscopy to resolutions of 2.2-3.7 Å. The structures reveal molecular details of how 173 protein molecules of 13 different types assemble into a complex spanning two membranes and a cell wall. The helical drive shaft at one end is intricately interwoven with the rotor component with both the export gate complex and the proximal rod forming interactions with the MS-ring. At the other end, the drive shaft distal rod passes through the LP-ring bushing complex, which functions as a molecular bearing anchored in the outer membrane through interactions with the lipopolysaccharide. The in situ structure of a protein complex capping the drive shaft provides molecular insights into the assembly process of this molecular machine.A comprehensive study of biocompatibility of detonation nanodiamonds
Journal of Molecular Liquids Elsevier 332 (2021) 115763
Abstract:
The article describes a complex study of detonation nanodiamonds (DND) aqueous dispersions. In this research, DND sample was characterised by means of IR, NMR spectroscopy, TEM, thermogravimetric analysis, size distribution, and ζ-potentials. It was shown that DND sample includes several surface groups, mainly hydroxylic, carboxylic, and carbonyl ones. Dynamic light scattering results revealed that in the concentration range C = 0.002–0.3 wt%, DND nanoparticles size is equal to 55 ± 5 nm. It was demonstrated that DND possessed weak antiradical activity, had an inhibitory effect on F1F0-ATPase activity, almost did not affect platelet aggregation, formed a stronger complex with human serum albumin (HSA) in subdomain IB (digitoxin, Kb = 20.0 ± 2.4 l·g−1) and a less strong complex in subdomain IIA (warfarin, Kb = 3.7 ± 0.1 l·g−1), inhibited the esterase activity of HSA, DND dispersions (C = 0.0012–0.15 wt%) revealed genotoxic effect towards PBMCs, did not affect cellular proliferation in the experiment with HEK293 cell line, did not reveal cytotoxic effect up to 0.01 wt%. Using DFT and MD approaches allowed us to perform a simulation of interaction between DND nanoparticle and water molecules.A test of the cosmological principle with quasars
Astrophysical Journal Letters IOP Publishing 908:2 (2021) L51
Abstract:
We study the large-scale anisotropy of the universe by measuring the dipole in the angular distribution of a flux-limited, all-sky sample of 1.36 million quasars observed by the Wide-field Infrared Survey Explorer (WISE). This sample is derived from the new CatWISE2020 catalog, which contains deep photometric measurements at 3.4 and 4.6 μm from the cryogenic, post-cryogenic, and reactivation phases of the WISE mission. While the direction of the dipole in the quasar sky is similar to that of the cosmic microwave background (CMB), its amplitude is over twice as large as expected, rejecting the canonical, exclusively kinematic interpretation of the CMB dipole with a p-value of 5 × 10−7 (4.9σ for a normal distribution, one-sided), the highest significance achieved to date in such studies. Our results are in conflict with the cosmological principle, a foundational assumption of the concordance ΛCDM model.The switching mechanism of the bacterial rotary motor combines tight regulation with inherent flexibility
The EMBO journal EMBO Press 40:6 (2021) e104683