Cryo-EM reveals distinct conformations of E. coli ATP synthase on exposure to ATP

eLife eLife Sciences Publications 8 (2019) e43864

Authors:

Meghna Sobti, Robert Ishmukhametov, James C Bouwer, Anita Ayer, Cacang Suarna, Nicola J Smith, Mary Christie, Roland Stocker, Thomas M Duncan, Alastair G Stewart

Abstract:

ATP synthase produces the majority of cellular energy in most cells. We have previously reported cryo-EM maps of autoinhibited E. coli ATP synthase imaged without addition of nucleotide (Sobti et al. 2016), indicating that the subunit ε engages the α, β and γ subunits to lock the enzyme and prevent functional rotation. Here we present multiple cryo-EM reconstructions of the enzyme frozen after the addition of MgATP to identify the changes that occur when this ε inhibition is removed. The maps generated show that, after exposure to MgATP, E. coli ATP synthase adopts a different conformation with a catalytic subunit changing conformation substantially and the ε C-terminal domain transitioning via an intermediate ‘half-up’ state to a condensed ‘down’ state. This work provides direct evidence for unique conformational states that occur in E. coli ATP synthase when ATP binding prevents the ε C-terminal domain from entering the inhibitory ‘up’ state.

A multi-mode digital holographic microscope

Review of Scientific Instruments AIP Publishing 90:2 (2019) 023705

Authors:

James Flewellen, Irwin Zaid, Richard Berry

Abstract:

We present a transmission-mode digital holographic microscope that can switch easily between three different imaging modes: inline, dark field off-axis, and bright field off-axis. Our instrument can be used: to track through time in three dimensions microscopic dielectric objects, such as motile micro-organisms; localize brightly scattering nanoparticles, which cannot be seen under conventional bright field illumination; and recover topographic information and measure the refractive index and dry mass of samples via quantitative phase recovery. Holograms are captured on a digital camera capable of high-speed video recording of up to 2000 frames per second. The inline mode of operation can be easily configurable to a large range of magnifications. We demonstrate the efficacy of the inline mode in tracking motile bacteria in three dimensions in a 160 μm × 160 μm × 100 μm volume at 45× magnification. Through the use of a novel physical mask in a conjugate Fourier plane in the imaging path, we use our microscope for high magnification, dark field off-axis holography, demonstrated by localizing 100 nm gold nanoparticles at 225× magnification up to at least 16 μm from the imaging plane. Finally, the bright field off-axis mode facilitates quantitative phase microscopy, which we employ to measure the refractive index of a standard resolution test target and to measure the dry mass of human erythrocytes.

Geckos race across the water's surface using multiple mechanisms

Current Biology Elsevier 28:24 (2018) 4046-4051.e2

Authors:

Jasmine A Nirody, Judy Jinn, Thomas Libby, Timothy J Lee, Ardian Jusufi, David L Hu, Robert J Full

Abstract:

Acrobatic geckos can sprint at high speeds over challenging terrain [1], scamper up the smoothest surfaces [2], rapidly swing underneath leaves [3], and right themselves in midair by swinging only their tails [4, 5]. From our field observations, we can add racing on the water's surface to the gecko's list of agile feats. Locomotion at the air-water interface evolved in over a thousand species, including insects, fish, reptiles, and mammals [6]. To support their weight, some larger-legged vertebrates use forces generated by vigorous slapping of the fluid's surface followed by a stroke of their appendage [7-12], whereas smaller animals, like arthropods, rely on surface tension to walk on water [6, 13]. Intermediate-sized geckos (Hemidactylus platyurus) fall squarely between these two regimes. Here, we report the unique ability of geckos to exceed the speed limits of conventional surface swimming. Several mechanisms likely contribute in this intermediate regime. In contrast to bipedal basilisk lizards [7-10], geckos used a stereotypic trotting gait with all four limbs, creating air cavities during slapping to raise their head and anterior trunk above water. Adding surfactant to the water decreased velocity by half, confirming surface tension's role. The superhydrophobic skin could reduce drag during semi-planing. Geckos laterally undulated their bodies, including their submerged posterior trunk and tail, generating thrust for forward propulsion, much like water dragons [14] and alligators [15]. Geckos again remind us of the advantages of multi-functional morphologies providing the opportunity for multiple mechanisms for motion.

Subunit exchange in protein complexes

Journal of Molecular Biology Elsevier 430:22 (2018) 4557-4579

Authors:

Samuel Tusk, Nicolas Delalez, Richard Berry

Abstract:

Over the past 50 years, protein complexes have been studied with techniques such as X-ray crystallography and electron microscopy, generating images which although detailed are static and homogeneous. More recently, limited application of in vivo fluorescence and other techniques has revealed that many complexes previously thought stable and compositionally uniform are dynamically variable, continually exchanging components with a freely circulating pool of “spares.” Here, we consider the purpose and prevalence of protein exchange, first reviewing the ongoing story of exchange in the bacterial flagella motor, before surveying reports of exchange in complexes across all domains of life, together highlighting great diversity in timescales and functions. Finally, we put this in the context of high-throughput proteomic studies which hint that exchange might be the norm, rather than an exception.

Elastic coupling power stroke mechanism of the F1-ATPase molecular motor

Proceedings of the National Academy of Sciences National Academy of Sciences 115:22 (2018) 5750-5755

Authors:

James L Martin, Robert Ishmukhametov, David Spetzler, Tassilo Hornung, Wayne D Frasch

Abstract:

The angular velocity profile of the 120° F1-ATPase power stroke was resolved as a function of temperature from 16.3 to 44.6 °C using a ΔμATP = −31.25 kBT at a time resolution of 10 μs. Angular velocities during the first 60° of the power stroke (phase 1) varied inversely with temperature, resulting in negative activation energies with a parabolic dependence. This is direct evidence that phase 1 rotation derives from elastic energy (spring constant, κ = 50 kBT·rad−2). Phase 2 of the power stroke had an enthalpic component indicating that additional energy input occurred to enable the γ-subunit to overcome energy stored by the spring after rotating beyond its 34° equilibrium position. The correlation between the probability distribution of ATP binding to the empty catalytic site and the negative Ea values of the power stroke during phase 1 suggests that this additional energy is derived from the binding of ATP to the empty catalytic site. A second torsion spring (κ = 150 kBT·rad−2; equilibrium position, 90°) was also evident that mitigated the enthalpic cost of phase 2 rotation. The maximum ΔGǂ was 22.6 kBT, and maximum efficiency was 72%. An elastic coupling mechanism is proposed that uses the coiled-coil domain of the γ-subunit rotor as a torsion spring during phase 1, and then as a crankshaft driven by ATP-binding–dependent conformational changes during phase 2 to drive the power stroke.