The switching mechanism of the bacterial rotary motor combines tight regulation with inherent flexibility

The EMBO journal EMBO Press 40:6 (2021) e104683

Authors:

Oshri Afanzar, Diana Di Paolo, Miriam Eisenstein, Kohava Levi, Anne Plochowietz, Achillefs N Kapanidis, Richard Michael Berry, Michael Eisenbach

Abstract:

Regulatory switches are wide spread in many biological systems. Uniquely among them, the switch of the bacterial flagellar motor is not an on/off switch but rather controls the motor's direction of rotation in response to binding of the signaling protein CheY. Despite its extensive study, the molecular mechanism underlying this switch has remained largely unclear. Here, we resolved the functions of each of the three CheY-binding sites at the switch in E. coli, as well as their different dependencies on phosphorylation and acetylation of CheY. Based on this, we propose that CheY motor switching activity is potentiated upon binding to the first site. Binding of potentiated CheY to the second site produces unstable switching and at the same time enables CheY binding to the third site, an event that stabilizes the switched state. Thereby, this mechanism exemplifies a unique combination of tight motor regulation with inherent switching flexibility.

Green algae scatter off sharp viscosity gradients.

Scientific reports 11:1 (2021) 399

Authors:

Simone Coppola, Vasily Kantsler

Abstract:

We study the behaviour of the green alga Chlamydomonas reinhardtii (CR) in the presence of neighbouring regions of different viscosity. We show that the velocity and angular diffusion of the algae decreases when the viscosity of the surrounding medium is increased. We report on a phenomenon occurring when the algae try to cross from a region of low viscosity to a highly viscous one, which causes CR to re-orient and scatter away from the interface if it is approached at a sufficiently small angle. We highlight that the effect does not occur for CR crossing from high to low viscosity regions. Lastly we show that algae do not concentrate in the region of high viscosity despite them swimming slower there. On the contrary, they concentrate in the region of low viscosity or maintain a uniform concentration profile, depending on the viscosity ratio between the two regions.

Tardigrade stepping pattern is robust to changes in orientation and substrate

INTEGRATIVE AND COMPARATIVE BIOLOGY 61 (2021) E655-E655

Authors:

JA Nirody, Rosario LA Duran, D Johnston, DJ Cohen

Tardigrades exhibit robust inter-limb coordination across walking speeds

(2021)

Authors:

Jasmine Nirody, Lisset Duran, Deborah Johnston, Daniel Cohen

A fast semi-discrete optimal transport algorithm for a unique reconstruction of the early Universe

(2020)

Authors:

Bruno Lévy, Roya Mohayaee, Sebastian VON HAUSEGGER