Mechanics of torque generation in the bacterial flagellar motor

(2015)

Authors:

Kranthi K Mandadapu, Jasmine A Nirody, Richard M Berry, George Oster

Composition, formation, and regulation of the cytosolic c-ring, a dynamic component of the type III secretion injectisome

PLoS Biology Public Library of Science 13:1 (2015) e1002039

Authors:

A Diepold, M Kudryashev, NJ Delalez, RM Berry, Judith Armitage

Abstract:

Many gram-negative pathogens employ a type III secretion injectisome to translocate effector proteins into eukaryotic host cells. While the structure of the distal "needle complex" is well documented, the composition and role of the functionally important cytosolic complex remain less well understood. Using functional fluorescent fusions, we found that the C-ring, an essential and conserved cytosolic component of the system, is composed of ~22 copies of SctQ (YscQ in Yersinia enterocolitica), which require the presence of YscQC, the product of an internal translation initiation site in yscQ, for their cooperative assembly. Photoactivated localization microscopy (PALM) reveals that in vivo, YscQ is present in both a free-moving cytosolic and a stable injectisome-bound state. Notably, fluorescence recovery after photobleaching (FRAP) shows that YscQ exchanges between the injectisome and the cytosol, with a t½ of 68 ± 8 seconds when injectisomes are secreting. In contrast, the secretin SctC (YscC) and the major export apparatus component SctV (YscV) display minimal exchange. Under non-secreting conditions, the exchange rate of YscQ is reduced to t½ = 134 ± 16 seconds, revealing a correlation between C-ring exchange and injectisome activity, which indicates a possible role for C-ring stability in regulation of type III secretion. The stabilization of the C-ring depends on the presence of the functional ATPase SctN (YscN). These data provide new insights into the formation and composition of the injectisome and present a novel aspect of type III secretion, the exchange of C-ring subunits, which is regulated with respect to secretion.

Quadrupedal locomotion on the water's surface by geckos

INTEGRATIVE AND COMPARATIVE BIOLOGY 55 (2015) E89-E89

Authors:

J Jinn, J Nirody, A Jusufi, T Libby, LF Jacobs, RJ Full

diCal-IBD: demography-aware inference of identity-by-descent tracts in unrelated individuals.

Bioinformatics (Oxford, England) 30:23 (2014) 3430-3431

Authors:

Paula Tataru, Jasmine A Nirody, Yun S Song

Abstract:

Unlabelled

We present a tool, diCal-IBD, for detecting identity-by-descent (IBD) tracts between pairs of genomic sequences. Our method builds on a recent demographic inference method based on the coalescent with recombination, and is able to incorporate demographic information as a prior. Simulation study shows that diCal-IBD has significantly higher recall and precision than that of existing single-nucleotide polymorphism-based IBD detection methods, while retaining reasonable accuracy for IBD tracts as small as 0.1 cM.

Availability

http://sourceforge.net/projects/dical-ibd.

Development of spatial coarse-to-fine processing in the visual pathway.

Journal of computational neuroscience 36:3 (2014) 401-414

Abstract:

The sequential analysis of information in a coarse-to-fine manner is a fundamental mode of processing in the visual pathway. Spatial frequency (SF) tuning, arguably the most fundamental feature of spatial vision, provides particular intuition within the coarse-to-fine framework: low spatial frequencies convey global information about an image (e.g., general orientation), while high spatial frequencies carry more detailed information (e.g., edges). In this paper, we study the development of cortical spatial frequency tuning. As feedforward input from the lateral geniculate nucleus (LGN) has been shown to have significant influence on cortical coarse-to-fine processing, we present a firing-rate based thalamocortical model which includes both feedforward and feedback components. We analyze the relationship between various model parameters (including cortical feedback strength) and responses. We confirm the importance of the antagonistic relationship between the center and surround responses in thalamic relay cell receptive fields (RFs), and further characterize how specific structural LGN RF parameters affect cortical coarse-to-fine processing. Our results also indicate that the effect of cortical feedback on spatial frequency tuning is age-dependent: in particular, cortical feedback more strongly affects coarse-to-fine processing in kittens than in adults. We use our results to propose an experimentally testable hypothesis for the function of the extensive feedback in the corticothalamic circuit.