The influence of disuse on bone microstructure and mechanics assessed by HR-pQCT.
Bone 63 (2014) 132-140
Abstract:
Numerous clinical cohorts are exposed to reduced skeletal loading and associated bone loss, including surgical patients, stroke and spinal cord injury victims, and women on bed rest during pregnancy. In this context, understanding disuse-related bone loss is critical to developing interventions to prevent fractures and the associated morbidity, mortality, and cost to the health care system. The aim of this pilot study was to use high-resolution peripheral QCT (HR-pQCT) to examine changes in trabecular and cortical microstructure and biomechanics during a period of non weight bearing (WB) and during recovery following return to normal WB. Surgical patients requiring a 6-week non WB period (n=12, 34.8±7.7 yrs) were scanned at the affected and contralateral tibia prior to surgery, after the 6-week non WB period, and 6 and 13 weeks after returning to full WB. At the affected ultradistal tibia, integral vBMD (including both trabecular and cortical compartments) decreased with respect to baseline (-1.2%), trabecular number increased (+5.6%), while trabecular thickness (-5.4%), separation (-4.6%), and heterogeneity (-7.2%) decreased (all p<0.05). Six weeks after return to full WB, trabecular structure measures reverted to baseline levels. In contrast, integral vBMD continued to decrease after 6 (-2.0%, p<0.05) and 13 weeks (-2.5%, p=0.07) of full WB. At the affected distal site, the disuse period resulted in increased porosity (+16.1%, p<0.005), which remained elevated after 6 weeks (+16.8%, p<0.01) and after 13 weeks (+16.2%, p<0.05). A novel topological analysis applied to the distal tibia cortex demonstrated increased number of canals with surface topology ("slabs" +21.7%, p<0.01) and curve topology ("tubes" +15.0%, p<0.05) as well as increased number of canal junctions (+21.4%, p<0.05) following the disuse period. Porosity increased uniformly through increases in both pore size and number. Finite element analysis at the ultradistal tibia showed decreased stiffness and failure load (-2.8% and -2.4%, p<0.01) following non WB. These biomechanical predictions remained depressed following 6 and 13 weeks of full WB. Finite element analysis at the distal site followed similar trends. Our results suggest that detectable microstructural and biomechanical degradation occurs--particularly within the cortical compartment--as a result of non WB and persists following return to normal loading. A better understanding of these microstructural changes and their short- and long-term influence on biomechanics may have clinical relevance in the context of disuse-related fracture prevention.Hybrid-fuel bacterial flagellar motors in Escherichia coli.
Proceedings of the National Academy of Sciences of the United States of America 111:9 (2014) 3436-3441
Abstract:
The bacterial flagellar motor rotates driven by an electrochemical ion gradient across the cytoplasmic membrane, either H(+) or Na(+) ions. The motor consists of a rotor ∼50 nm in diameter surrounded by multiple torque-generating ion-conducting stator units. Stator units exchange spontaneously between the motor and a pool in the cytoplasmic membrane on a timescale of minutes, and their stability in the motor is dependent upon the ion gradient. We report a genetically engineered hybrid-fuel flagellar motor in Escherichia coli that contains both H(+)- and Na(+)-driven stator components and runs on both types of ion gradient. We controlled the number of each type of stator unit in the motor by protein expression levels and Na(+) concentration ([Na(+)]), using speed changes of single motors driving 1-μm polystyrene beads to determine stator unit numbers. De-energized motors changed from locked to freely rotating on a timescale similar to that of spontaneous stator unit exchange. Hybrid motor speed is simply the sum of speeds attributable to individual stator units of each type. With Na(+) and H(+) stator components expressed at high and medium levels, respectively, Na(+) stator units dominate at high [Na(+)] and are replaced by H(+) units when Na(+) is removed. Thus, competition between stator units for spaces in a motor and sensitivity of each type to its own ion gradient combine to allow hybrid motors to adapt to the prevailing ion gradient. We speculate that a similar process may occur in species that naturally express both H(+) and Na(+) stator components sharing a common rotor.Anatomy of F1-ATPase powered rotation
Proceedings of the National Academy of Sciences (2014)
Stoichiometry and turnover of the bacterial flagellar switch protein FliN.
mBio American Society for Microbiology 5:4 (2014) e01216-e01214
Abstract:
Some proteins in biological complexes exchange with pools of free proteins while the complex is functioning. Evidence is emerging that protein exchange can be part of an adaptive mechanism. The bacterial flagellar motor is one of the most complex biological machines and is an ideal model system to study protein dynamics in large multimeric complexes. Recent studies showed that the copy number of FliM in the switch complex and the fraction of FliM that exchanges vary with the direction of flagellar rotation. Here, we investigated the stoichiometry and turnover of another switch complex component, FliN, labeled with the fluorescent protein CyPet, in Escherichia coli. Our results confirm that, in vivo, FliM and FliN form a complex with stoichiometry of 1:4 and function as a unit. We estimated that wild-type motors contained 120 ± 26 FliN molecules. Motors that rotated only clockwise (CW) or counterclockwise (CCW) contained 114 ± 17 and 144 ± 26 FliN molecules, respectively. The ratio of CCW-to-CW FliN copy numbers was 1.26, very close to that of 1.29 reported previously for FliM. We also measured the exchange of FliN molecules, which had a time scale and dependence upon rotation direction similar to those of FliM, consistent with an exchange of FliM-FliN as a unit. Our work confirms the highly dynamic nature of multimeric protein complexes and indicates that, under physiological conditions, these machines might not be the stable, complete structures suggested by averaged fixed methodologies but, rather, incomplete rings that can respond and adapt to changing environments. Importance: The flagellum is one of the most complex structures in a bacterial cell, with the core motor proteins conserved across species. Evidence is now emerging that turnover of some of these motor proteins depends on motor activity, suggesting that turnover is important for function. The switch complex transmits the chemosensory signal to the rotor, and we show, by using single-cell measurement, that both the copy number and the fraction of exchanging molecules vary with the rotational bias of the rotor. When the motor is locked in counterclockwise rotation, the copy number is similar to that determined by averaged, fixed methodologies, but when locked in a clockwise direction, the number is much lower, suggesting that that the switch complex ring is incomplete. Our results suggest that motor remodeling is an important component in tuning responses and adaptation at the motor.Stepping Dynamics of the Bacterial Flagellar Motor
Biophysical Journal Elsevier 106:2 (2014) 577a-578a