Symmetry controlled single spin cycloid switching in multiferroic BiFeO3

(2024)

Authors:

Pratap Pal, Jonathon L Schad, Anuradha M Vibhakar, Shashank Kumar Ojha, Gi-Yeop Kim, Saurav Shenoy, Fei Xue, Mark S Rzchowski, A Bombardi, Roger D Johnson, Si-Young Choi, Long-Qing Chen, Ramamoorthy Ramesh, Paolo G Radaelli, Chang-Beom Eom

Jan Zaanen – In memoriam

Advances in Physics Taylor & Francis (2024)

Switching of ferrotoroidal domains via an intermediate mixed state in the multiferroic Y-type hexaferrite Ba0.5Sr1.5Mg2Fe12O22

Physical Review B American Physical Society (APS) 110:13 (2024) 134410

Authors:

Jiahao Chen, Francis Chmiel, Jieyi Liu, Dharmalingam Prabhakaran, Paolo G Radaelli, Roger D Johnson

Abstract:

We report a detailed study of the magnetic field switching of ferrotoroidal/multiferroic domains in the Y-Type hexaferrite compound Ba0.5Sr1.5Mg2Fe12O22. By combining data from superconducting quantum interference device (SQUID) magnetometry, magnetocurrent measurements, and resonant x-ray scattering experiments, we arrive at a complete description of the deterministic switching, which involves the formation of a temperature-dependent mixed state in low magnetic fields. This mechanism is likely to be shared by other members of the hexaferrite family, and presents a challenge for the development of high-speed read-write memory devices based on these materials.

Quantum-confined tunable ferromagnetism on the surface of a Van der Waals antiferromagnet NaCrTe2

Nano Letters American Chemical Society 24:32 (2024) 9832-9838

Authors:

Yidian Li, Xian Du, Junjie Wang, Runzhe Xu, Wenxuan Zhao, Kaiyi Zhai, Jieyi Liu, Houke Chen, Nicholas C Plumb, Sailong Ju, Ming Shi, Zhongkai Liu, Jian-Gang Guo, Xiaolong Chen, Yulin Chen, Yiheng Yang, Lexian Yang

Abstract:

The surface of three-dimensional materials provides an ideal and versatile platform to explore quantum-confined physics. Here, we systematically investigate the electronic structure of Na-intercalated CrTe2, a van der Waals antiferromagnet, using angle-resolved photoemission spectroscopy and ab initio calculations. The measured band structure deviates from the calculation of bulk NaCrTe2 but agrees with that of ferromagnetic monolayer CrTe2. Consistently, we observe unexpected exchange splitting of the band dispersions, persisting well above the Néel temperature of bulk NaCrTe2. We argue that NaCrTe2 features a quantum-confined 2D ferromagnetic state in the topmost surface layer due to strong ferromagnetic correlation in the CrTe2 layer. Moreover, the exchange splitting and the critical temperature can be controlled by surface doping of alkali-metal atoms, suggesting the feasibility of tuning the surface ferromagnetism. Our work not only presents a simple platform for exploring tunable 2D ferromagnetism but also provides important insights into the quantum-confined low-dimensional magnetic states.

A tensorial approach to 'altermagnetism'

(2024)