Spatially reconfigurable antiferromagnetic states in topologically rich free-standing nanomembranes

Nature Materials Nature Research 23:5 (2024) 619-626

Authors:

Hariom Jani, Jack Harrison, Sonu Hooda, Saurav Prakash, Proloy Nandi, Junxiong Hu, Zhiyang Zeng, Jheng-Cyuan Lin, Charles Godfrey, Ganesh ji Omar, Tim A Butcher, Jörg Raabe, Simone Finizio, Aaron Voon-Yew Thean, A Ariando, Paolo G Radaelli

Abstract:

Antiferromagnets hosting real-space topological textures are promising platforms to model fundamental ultrafast phenomena and explore spintronics. However, they have only been epitaxially fabricated on specific symmetry-matched substrates, thereby preserving their intrinsic magneto-crystalline order. This curtails their integration with dissimilar supports, restricting the scope of fundamental and applied investigations. Here we circumvent this limitation by designing detachable crystalline antiferromagnetic nanomembranes of α-Fe2O3. First, we show—via transmission-based antiferromagnetic vector mapping—that flat nanomembranes host a spin-reorientation transition and rich topological phenomenology. Second, we exploit their extreme flexibility to demonstrate the reconfiguration of antiferromagnetic states across three-dimensional membrane folds resulting from flexure-induced strains. Finally, we combine these developments using a controlled manipulator to realize the strain-driven non-thermal generation of topological textures at room temperature. The integration of such free-standing antiferromagnetic layers with flat/curved nanostructures could enable spin texture designs via magnetoelastic/geometric effects in the quasi-static and dynamical regimes, opening new explorations into curvilinear antiferromagnetism and unconventional computing.

Holographic imaging of antiferromagnetic domains with in-situ magnetic field

Optics Express Optica Publishing Group 32:4 (2024) 5885-5897

Authors:

Jack Harrison, Hariom Jani, Junxiong Hu, Manohar Lal, Jheng-Cyuan Lin, Horia Popescu, Jason Brown, Nicolas Jaouen, A Ariando, Paolo G Radaelli

Abstract:

Lensless coherent x-ray imaging techniques have great potential for high-resolution imaging of magnetic systems with a variety of in-situ perturbations. Despite many investigations of ferromagnets, extending these techniques to the study of other magnetic materials, primarily antiferromagnets, is lacking. Here, we demonstrate the first (to our knowledge) study of an antiferromagnet using holographic imaging through the 'holography with extended reference by autocorrelation linear differential operation' technique. Energy-dependent contrast with both linearly and circularly polarized x-rays are demonstrated. Antiferromagnetic domains and topological textures are studied in the presence of applied magnetic fields, demonstrating quasi-cyclic domain reconfiguration up to 500 mT.

ARPES investigation of the electronic structure and its evolution in magnetic topological insulator MnBi2+2nTe4+3n family

Nature Physics Springer Nature 20:4 (2024) 571-578

Authors:

Dingsong Wu, Jiangang Yang, Jieyi Liu, Houke Chen, Yiheng Yang, Cheng Peng, Yulin Chen, Junjie Jia

Abstract:

The origin of high-temperature superconductivity in iron-based superconductors is still not understood; determination of the pairing symmetry is essential for understanding the superconductivity mechanism. In the iron-based superconductors that have hole pockets around the Brillouin zone centre and electron pockets around the zone corners, the pairing symmetry is generally considered to be s±, which indicates a sign change in the superconducting gap between the hole and electron pockets. For the iron-based superconductors with only hole pockets, however, a couple of pairing scenarios have been proposed, but the exact symmetry is still controversial. Here we determine that the pairing symmetry in KFe2As2—which is a prototypical iron-based superconductor with hole pockets both around the zone centre and around the zone corners—is also of the s± type. Our laser-based angle-resolved photoemission measurements have determined the superconducting gap distribution and identified the locations of the gap nodes on all the Fermi surfaces around the zone centres and the zone corners. These results unify the pairing symmetry in hole-doped iron-based superconductors and point to spin fluctuation as the pairing glue in generating superconductivity.

Holographic imaging of antiferromagnetic domains with in-situ magnetic field

University of Oxford (2024)

Abstract:

Dataset accompanying the publication

Spatially reconfigurable antiferromagnetic states in topologically rich free-standing nanomembranes

University of Oxford (2024)

Authors:

Hariom Jani, Jack Harrison, Sonu Hooda, Saurav Prakas, Proloy Nandi, Junxiong Hu, Zhiyang Zeng, Jheng-Cyuan Lin, Charles Godfrey, Ganesh ji Omar, Tim A Butcher, Jörg Raab, Simone Finizio, Aaron Voon-Yew Thean, A Ariando, Paolo G Radaelli

Abstract:

The datasets included herein contain experimental results (Scanning transmission X-ray microscopy, X-ray diffraction, electron diffraction, confocal microscopy etc.) and related theoretical analysis for the investigation of antiferromagnetic topological textures in freestanding membranes. The steps used in the obtaining, reducing and analysing the datasets can be found in the Methods and Supplementary Information sections of the published manuscript.