Revealing emergent magnetic charge in an antiferromagnet with diamond quantum magnetometry

Nature Materials Springer Nature 23:2 (2023) 205-211

Authors:

Anthony KC Tan, Hariom Jani, Michael Högen, Lucio Stefan, Claudio Castelnovo, Daniel Braund, Alexandra Geim, Annika Mechnich, Matthew SG Feuer, Helena S Knowles, Ariando Ariando, Paolo G Radaelli, Mete Atatüre

Abstract:

Whirling topological textures play a key role in exotic phases of magnetic materials and are promising for logic and memory applications. In antiferromagnets, these textures exhibit enhanced stability and faster dynamics with respect to their ferromagnetic counterparts, but they are also difficult to study due to their vanishing net magnetic moment. One technique that meets the demand of highly sensitive vectorial magnetic field sensing with negligible backaction is diamond quantum magnetometry. Here we show that an archetypal antiferromagnet—haematite—hosts a rich tapestry of monopolar, dipolar and quadrupolar emergent magnetic charge distributions. The direct read-out of the previously inaccessible vorticity of an antiferromagnetic spin texture provides the crucial connection to its magnetic charge through a duality relation. Our work defines a paradigmatic class of magnetic systems to explore two-dimensional monopolar physics, and highlights the transformative role that diamond quantum magnetometry could play in exploring emergent phenomena in quantum materials.

Holographic imaging of antiferromagnetic domains with in-situ magnetic field

(2023)

Authors:

Jack Harrison, Hariom Jani, Junxiong Hu, Manohar Lal, Jheng-Cyuan Lin, Horia Popescu, Jason Brown, Nicolas Jaouen, A Ariando, Paolo G Radaelli

Switching of ferrotoroidal domains via an intermediate mixed state in the multiferroic Y-type hexaferrite Ba$_{0.5}$Sr$_{1.5}$Mg$_2$Fe$_{12}$O$_{22}$

(2023)

Authors:

Jiahao Chen, Francis Chmiel, Jieyi Liu, Dharmalingam Prabhakaran, Paolo G Radaelli, Roger D Johnson

Emergent helical texture of electric dipoles

Acta Crystallographica Section A: Foundations and advances International Union of Crystallography (IUCr) 79:a2 (2023) c258-c258

Authors:

DD Khalyavin, F Orlandi, P Manuel, RD Johnson, PG Radaelli, AA Belik

Understanding the role of non-fullerene acceptor crystallinity on the charge transport properties and performance of organic solar cells

Journal of Materials Chemistry A Royal Society of Chemistry 11:30 (2023) 16263-16278

Authors:

Pierluigi Mondelli, Pascal Kaienburg, Francesco Silvestri, Rebecca Scatena, Claire Welton, Martine Grandjean, Vincent Lemaur, Eduardo Solano, Mathias Nyman, Peter Horton, Simon Coles, Esther Barrena, Moritz Riede, Paolo Radelli, David Beljonne, Gn Manjunatha Reddy, Graham Edward Morse

Abstract:

The acceptor crystallinity has long been associated with favourable organic solar cells (OSCs) properties such as high mobility and Fill Factor. In particular, this applies to acceptor materials such as fullerene-derivatives and the most recent Non-Fullerene Acceptors (NFAs), which are now surpassing 19% of Power Conversion Efficiency. Despite these advantages are commonly attributed to their 3-dimensional crystal packing motif in the single crystal, the bridge that links the acceptor crystal packing from single crystals to solar cells has not clearly been shown yet. In this work, we investigate the molecular organisation of seven NFAs (o-IDTBR, IDIC, ITIC, m-ITIC, 4TIC, 4TICO, m-4TICO), following the evolution of their packing motif in single-crystals, powder, and thin films made with pure NFAs and donor:NFA blends. We observed a good correlation between the NFA single crystal packing motif and their molecular arrangement in the bulk heterojunction. The NFA packing motif affects the material’s propensity to form highly crystalline domain in the blend. We specifically found that 3D reticular packing motifs show stronger ordering than 0D herringbone ones. However, the NFA packing motif is not directly correlating with device performance parameters: Although higher NFA crystallinity yields higher mobility, we found the domain purity to be more important for obtaining high efficiency organic solar cells by governing bimolecular recombination.