Incommensurate counterrotating magnetic order stabilized by Kitaev interactions in the layered honeycomb $α$-Li$_2$IrO$_3$
Physical Review B American Physical Society 93:19 (2016) 195158
Abstract:
The layered honeycomb magnet α-Li2IrO3 has been theoretically proposed as a candidate to display unconventional magnetic behaviour associated with Kitaev interactions between spin-orbit entangled jeff = 1=2 magnetic moments on a honeycomb lattice. Here we report single crystal magnetic resonant x-ray diffraction combined with powder magnetic neutron diffraction to reveal an incommensurate magnetic order in the honeycomb layers with Ir magnetic moments counterrotating on nearest-neighbor sites. This unexpected type of magnetic structure for a honeycomb magnet cannot be explained by a spin Hamiltonian with dominant isotropic (Heisenberg) couplings. The magnetic structure shares many key features with the magnetic order in the structural polytypes β-and γ-Li2IrO3, understood theoretically to be stabilized by dominant Kitaev interactions between Ir moments located on the vertices of three-dimensional hyperhoneycomb and stripyhoneycomb lattices, respectively. Based on this analogy and a theoretical soft-spin analysis of magnetic ground states for candidate spin Hamiltonians, we propose that Kitaev interactions also dominate in α-Li2IrO3, indicative of universal Kitaev physics across all three members of the harmonic honeycomb family of Li2IrO3 polytypes.Modulated spin helicity stabilized by incommensurate orbital density waves in a quadruple perovskite manganite
Physical Review B American Physical Society 93:18 (2016) 180403
Abstract:
Through a combination of neutron diffraction and Landau theory we describe the spin ordering in the ground state of the quadruple perovskite manganite CaMn7O12 - a magnetic multiferroic supporting an incommensurate orbital density wave that onsets above the magnetic ordering temperature, TN1 = 90 K. The multi-k magnetic structure in the ground state was found to be a nearly-constant-moment helix with modulated spin helicity, which oscillates in phase with the orbital occupancies on the Mn3+ sites via trilinear magneto-orbital coupling. Our phenomenological model also shows that, above TN2 = 48 K, the primary magnetic order parameter is locked into the orbital wave by an admixture of helical and collinear spin density wave structures. Furthermore, our model naturally explains the lack of a sharp dielectric anomaly at TN1 and the unusual temperature dependence of the electrical polarisation.Modulated spin helicity stabilized by incommensurate orbital density waves in a quadruple perovskite manganite
(2016)
Ab Initio Cycloidal and Chiral Magnetoelectric Responses in Cr$_{2}$O$_{3}$
(2016)
Coherent magneto-elastic domains in multiferroic BiFeO3 films
(2015)