Monoclinic crystal structure of α−RuCl3 and the zigzag antiferromagnetic ground state
Physical Review B American Physical Society 92:23 (2015) 235119
Abstract:
The layered honeycomb magnet alpha-RuCl3 has been proposed as a candidate to realize a Kitaev spin model with strongly frustrated, bond-dependent, anisotropic interactions between spin-orbit entangled jeff=1/2 Ru4+ magnetic moments. Here we report a detailed study of the three-dimensional crystal structure using x-ray diffraction on untwinned crystals combined with structural relaxation calculations. We consider several models for the stacking of honeycomb layers and find evidence for a crystal structure with a monoclinic unit cell corresponding to a stacking of layers with a unidirectional in-plane offset, with occasional in-plane sliding stacking faults, in contrast with the currently-assumed trigonal 3-layer stacking periodicity. We report electronic band structure calculations for the monoclinic structure, which find support for the applicability of the jeff=1/2 picture once spin orbit coupling and electron correlations are included. We propose that differences in the magnitude of anisotropic exchange along symmetry inequivalent bonds in the monoclinic cell could provide a natural mechanism to explain the spin gap observed in powder inelastic neutron scattering, in contrast to spin models based on the three-fold symmetric trigonal structure, which predict a gapless spectrum within linear spin wave theory. Our susceptibility measurements on both powders and stacked crystals, as well as neutron powder diffraction show a single magnetic transition at TN ~ 13K. The analysis of the neutron data provides evidence for zigzag magnetic order in the honeycomb layers with an antiferromagnetic stacking between layers. Magnetization measurements on stacked single crystals in pulsed field up to 60T show a single transition around 8T for in-plane fields followed by a gradual, asymptotic approach to magnetization saturation, as characteristic of strongly anisotropic exchange interactions.The magnetic ground state of two isostructual polymeric quantum magnets, [Cu(HF2)(pyrazine)SbF6 and [Co(HF2)(pyrazine)2]SbF6, investigated with neutron powder diffraction
Physical Review B American Physical Society 92:13 (2015) 134406
Abstract:
The magnetic ground state of two isostructural coordination polymers (i) the quasi two-dimensional S = 1/2 square-lattice antiferromagnet [Cu(HF$_{2}$)(pyrazine)$_{2}$]SbF$_{6}$; and (ii) a new compound [Co(HF$_{2}$)(pyrazine)$_{2}$]SbF$_{6}$, were examined with neutron powder diffraction measurements. We find the ordered moments of the Heisenberg S = 1/2 Cu(II) ions in [Cu(HF$_{2}$)(pyrazine)$_{2}$]SbF$_{6}$ are 0.6(1)$\mu_{B}$, whilst the ordered moments for the Co(II) ions in [Co(HF$_{2}$)(pyrazine)$_{2}$]SbF$_{6}$ are 3.02(6)$\mu_{B}$. For Cu(II), this reduced moment indicates the presence of quantum fluctuations below the ordering temperature. We show from heat capacity and electron spin resonance measurements, that due to the crystal electric field splitting of the S = 3/2 Co(II) ions in [Co(HF$_{2}$)(pyrazine)$_{2}$]SbF$_{6}$, this isostructual polymer also behaves as an effective spin-half magnet at low temperatures. The Co moments in [Co(HF$_{2}$)(pyrazine)$_{2}$]SbF$_{6}$ show strong easy-axis anisotropy, neutron diffraction data which do not support the presence of quantum fluctuations in the ground state and heat capacity data which are consistent with 2D or close to 3D spatial exchange anisotropy.Magnetically-induced ferroelectricity in the (ND4)2[FeCl5(D2O)] molecular compound.
Scientific reports 5 (2015) 14475
Abstract:
The number of magnetoelectric multiferroic materials reported to date is scarce, as magnetic structures that break inversion symmetry and induce an improper ferroelectric polarization typically arise through subtle competition between different magnetic interactions. The (NH4)2[FeCl5(H2O)] compound is a rare case where such improper ferroelectricity has been observed in a molecular material. We have used single crystal and powder neutron diffraction to obtain detailed solutions for the crystal and magnetic structures of (NH4)2[FeCl5(H2O)], from which we determined the mechanism of multiferroicity. From the crystal structure analysis, we observed an order-disorder phase transition related to the ordering of the ammonium counterion. We have determined the magnetic structure below TN, at 2 K and zero magnetic field, which corresponds to a cycloidal spin arrangement with magnetic moments contained in the ac-plane, propagating parallel to the c-axis. The observed ferroelectricity can be explained, from the obtained magnetic structure, via the inverse Dzyaloshinskii-Moriya mechanism.Sc2NiMnO6: A Double-Perovskite with a Magnetodielectric Response Driven by Multiple Magnetic Orders.
Inorganic chemistry 54:16 (2015) 8012-8021
Abstract:
Perovskite materials provide a large variety of interesting physical properties and applications. Here, we report on unique properties of a fully ordered magnetodielectric double-perovskite, Sc2NiMnO6 (space group P21/n, a = 4.99860 Å, b = 5.35281 Å, c = 7.34496 Å, and β = 90.7915°), exhibiting sequential magnetic transitions at T1 = 35 K and T2 = 17 K. The transition at T1 corresponds to a single-k antiferromagnetic phase with propagation vector k1 = (1/2, 0, 1/2), while the second transition at T2 corresponds to a 2-k magnetic structure with propagation vectors k1 = (1/2, 0, 1/2) and k2 = (0, 1/2, 1/2). Symmetry analysis suggests that the two ordering wave vectors are independent, and calculations imply that k1 is associated with the Mn sublattice and k2 with the Ni sublattice, suggesting that Mn-Ni coupling is very small or absent. A magnetodielectric anomaly at T2 likely arises from an antiferroelectric ordering that results from the exchange-striction between the two magnetic sublattices belonging to k1 and k2. The behavior of Sc2NiMnO6 demonstrates 3d double-perovskites with small A-site cations as a promising avenue in which to search for magnetoelectric materials.Theory of Electromagnons in CuO.
Physical review letters 114:19 (2015) 197201