Dark matter attenuation effects: sensitivity ceilings for spin-dependent and spin-independent interactions

Journal of Cosmology and Astroparticle Physics IOP Publishing 2025:4 (2025) 017

Authors:

N Darvishi, J Smirnov, S Autti, L Bloomfield, A Casey, N Eng, P Franchini, Rp Haley, Pj Heikkinen, A Jennings, A Kemp, E Leason, J March-Russell, A Mayer, Jocelyn Monroe, D Münstermann, Mt Noble, Jr Prance, X Rojas, T Salmon, J Saunders, R Smith, Md Thompson, A Thomson, A Ting, V Tsepelin, Sm West, L Whitehead, De Zmeev

Abstract:

Direct detection experiments aimed at uncovering the elusive nature of dark matter (DM) have made significant progress in probing ever lower cross-sections for DM-nucleon interactions. At the same time, an upper limit in the cross-section sensitivity region is present due to DM scattering in the Earth and atmosphere and as a result never reaching the detector. We investigate the impact of this effect for both spin-dependent and spin-independent interactions. In contrast to previous studies that assume a straight line path for DM scattering we employ a semi-analytic diffusion model that takes into account the impact of potentially large angle deviations prevalent for light DM masses. We find that for sufficiently low energy thresholds, this difference in modelling impacts the DM interaction cross-section sensitivity. This study evaluates the impact in the context of the QUEST-DMC experiment, which utilises surface-based detectors with superfluid Helium-3 bolometers to search for sub-GeV DM exploiting low energy threshold. At masses below 1 GeV/c^2 the deviation between the two frameworks becomes pronounced. The ceiling sensitivity limit for QUEST-DMC on spin-dependent DM-neutron cross-sections is ∼ 3 × 10^-24cm^2 using the diffusive framework and approximately doubles with the straight-line path DM scattering. Similarly, for spin-independent DM-nucleon cross-sections, the ceiling limit is ∼ 7.5 × 10^-27cm^2 under the diffusive framework and also increases about a factor of two with the straight-line path approximation, within the mass range of 0.025–5 GeV/c^2.

Logarithmically-accurate and positive-definite NLO shower matching

(2025)

Authors:

Melissa van Beekveld, Silvia Ferrario Ravasio, Jack Helliwell, Alexander Karlberg, Gavin P Salam, Ludovic Scyboz, Alba Soto-Ontoso, Gregory Soyez, Silvia Zanoli

Supernova bounds on new scalars from resonant and soft emission

Journal of High Energy Physics Springer 2025:4 (2025) 13

Authors:

Edward Hardy, Anton Sokolov, Henry Stubbs

Abstract:

We study supernova cooling constraints on new light scalars that mix with the Higgs, couple only to nucleons, or couple only to leptons. We show that in all these cases scalars with masses smaller than the plasma frequency in the supernova core are efficiently produced by resonant mixing with the in-medium longitudinal degree of freedom of the photon. The resulting bounds are free from uncertainties associated to the rate of emission of the scalar in nucleon-nucleon scatterings, which would otherwise badly affect the Higgs-mixed and nucleophilic scenarios. Heavier scalars that mix with the Higgs or couple only to nucleons are mostly produced by nucleon bremsstrahlung, and we obtain a conservative approximation for the corresponding rate using a soft theorem. We also analyse the impact of different supernova profiles, nucleon degeneracy, trapping and scalar decays on the constraints.

A collinear shower algorithm for NSL non-singlet fragmentation

Journal of High Energy Physics Springer 2025:3 (2025) 209

Authors:

Melissa van Beekveld, Mrinal Dasgupta, Basem Kamal El-Menoufi, Jack Helliwell, Pier Francesco Monni, Gavin P Salam

Abstract:

We formulate a collinear partonic shower algorithm that achieves next-to-single-logarithmic (NSL, αsnLn−1) accuracy for collinear-sensitive non-singlet fragmentation observables. This entails the development of an algorithm for nesting triple-collinear splitting functions. It also involves the inclusion of the one-loop double-collinear corrections, through a z-dependent NLO-accurate effective 1 → 2 branching probability, using a formula that can be applied more generally also to future full showers with 1 → 3 splitting kernels. The specific NLO branching probability is calculated in two ways, one based on slicing, the other using a subtraction approach based on recent analytical calculations. We close with demonstrations of the shower’s accuracy for non-singlet partonic fragmentation functions and the energy spectrum of small-R quark jets. This work represents an important conceptual step towards general NNLL accuracy in parton showers.

VERITAS and Multiwavelength Observations of the Blazar B3 2247+381 in Response to an IceCube Neutrino Alert

The Astrophysical Journal American Astronomical Society 982:2 (2025) 80

Authors:

A Acharyya, CB Adams, P Bangale, JT Bartkoske, W Benbow, JH Buckley, JL Christiansen, A Duerr, M Errando, M Escobar Godoy, A Falcone, Q Feng, J Foote, L Fortson, A Furniss, G Gallagher, W Hanlon, D Hanna, O Hervet, CE Hinrichs, J Hoang, J Holder, TB Humensky, W Jin

Abstract:

While the sources of the diffuse astrophysical neutrino flux detected by the IceCube Neutrino Observatory are still largely unknown, one of the promising methods to improve our understanding of them is investigating the potential temporal and spatial correlations between neutrino alerts and the electromagnetic radiation from blazars. We report on the multiwavelength target-of-opportunity observations of the blazar B3 2247+381, taken in response to an IceCube multiplet alert for a cluster of muon neutrino events compatible with the source location between 2022 May 20 and 2022 November 10. B3 2247+381 was not detected with VERITAS during this time period. The source was found to be in a low-flux state in the optical, ultraviolet, and gamma-ray bands for the time interval corresponding to the neutrino event, but was detected in the hard X-ray band with NuSTAR during this period. We find the multiwavelength spectral energy distribution is described well using a simple one-zone leptonic synchrotron self-Compton radiation model. Moreover, assuming the neutrinos originate from hadronic processes within the jet, the neutrino flux would be accompanied by a photon flux from the cascade emission, and the integrated photon flux required in such a case would significantly exceed the total multiwavelength fluxes and the VERITAS upper limits presented here. The lack of flaring activity observed with VERITAS, combined with the low multiwavelength flux levels, as well as the significance of the neutrino excess being at a 3σ level (uncorrected for trials), makes B3 2247+381 an unlikely source of the IceCube multiplet. We conclude that the neutrino excess is likely a background fluctuation.