Searching for neutrino transients below 1 TeV with IceCube

Sissa Medialab Srl (2021) 1131

Authors:

Michael J Larson, Rasha Abbasi, Markus Ackermann, Jenni Adams, Juanan Aguilar, M Ahlers, Maryon Ahrens, Cyril Martin Alispach, Antonio Augusto Alves Junior, Najia Moureen Binte Amin, Rui An, Karen Andeen, Tyler Anderson, Gisela Anton, Carlos Arguelles, Yosuke Ashida, Spencer Axani, Xinhua Bai, Aswathi Balagopal V., Anastasia Maria Barbano, SW Barwick, Benjamin Bastian, Vedant Basu, Sebastian Baur, RC Bay, JJ Beatty, K-H Becker, Julia Becker Tjus, Chiara Bellenghi, Segev BenZvi, D Berley, Elisa Bernardini, DZ Besson, Gary Binder, Daniel Bindig, E Blaufuss, Summer Blot, Matthias Boddenberg, Federico Bontempo, Jurgen Borowka, S Boser, Olga Botner, Jakob Boettcher, Etienne Bourbeau, Federica Bradascio, J Braun, Stephanie Bron, Jannes Brostean-Kaiser, Sally-Ann Browne, Alexander Burgman, Ryan T Burley, Raffaela Busse, Michael Campana, Erin Carnie-Bronca, Chujie Chen, Dmitry Chirkin, Koun Choi, Bryanlee Clark, Kenneth Clark, Lew Classen, Alan Coleman, Gabriel Collin, JM Conrad, Paul Coppin, Pablo Correa, DF Cowen, R Cross, Christian Dappen, Pranav Dave, Catherine DE CLERCQ, James DeLaunay, Hans Dembinski, Kunal Deoskar, Sam De Ridder, Abhishek Desai, Paolo Desiati, Krijn de Vries, Gwenhaël de Wasseige, Meike De With, Tyce DeYoung, Sukeerthi Dharani, Alejandro Diaz, Juan Carlos Diaz-Velez, Markus Dittmer, Hrvoje Dujmovic, Matt Dunkman, Michael DuVernois, Emily Dvorak, Thomas Ehrhardt, Philipp Eller, Ralph Engel, Hannah Erpenbeck, John Evans, PA Evenson, Kwok Lung Fan, AR Fazely, Sebastian Fiedlschuster, Aaron Fienberg, Kirill Filimonov, Chad Finley, Leander Fischer, Derek B Fox, Anna Franckowiak, Elizabeth Friedman, Alexander Fritz, Philipp Furst, TK Gaisser, Jay Gallagher, Erik Ganster, Alfonso Garcia, Simone Garrappa, L Gerhardt, Ava Ghadimi, Christian Glaser, Theo Glauch, Thorsten Glusenkamp, A Goldschmidt, Javier Gonzalez, Sreetama Goswami, Darren Grant, Timothée Grégoire, Spencer Griswold, Mehmet Gunduz, Christoph Günther, Christian Haack, Allan Hallgren, R Halliday, L Halve, F Halzen, Martin Ha Minh, Kael Hanson, John Hardin, Alexander A Harnisch, Andreas Haungs, Simon Hauser, Dustin Hebecker, K Helbing, Felix Henningsen, Emma C Hettinger, Stephanie Hickford, Joshua Hignight, Colton Hill, GC Hill, Kara Hoffman, Ruth Hoffmann, Tobias Hoinka, Benjamin Hokanson-Fasig, K Hoshina, Feifei Huang, Matthias Huber, Thomas Huber, Klas Hultqvist, Mirco Hunnefeld, Raamis Hussain, Seongjin In, Nadège Iovine, Aya Ishihara, Matti Jansson, George Japaridze, Minjin Jeong, Ben Jones, Donghwa Kang, Woosik Kang, Xinyue Kang, Alexander Kappes, David Kappesser, Timo Karg, Martina Karl, A Karle, U Katz, M Kauer, Moritz Kellermann, JL Kelley, Ali Kheirandish, Ken'ichi Kin, Thomas Kintscher, Joanna Kiryluk, Spencer Klein, Ramesh Koirala, Hermann Kolanoski, Tomas Kontrimas, Lutz Kopke, Claudio Kopper, Sandro Kopper, DJ Koskinen, Paras Koundal, Michael Kovacevich, Marek Kowalski, Tetiana Kozynets, Emma Kun, Naoko Kurahashi Neilson, Neha Navnitkumar Lad, Cristina Lagunas Gualda, Justin Lanfranchi, Frederik Hermann Lauber, Jeffrey Lazar, Jiwoong Lee, Kayla Leonard, Agnieszka Leszczynska, Yijia Li, Massimiliano Lincetto, Qinrui Liu, Maria Liubarska, Elisa Lohfink, Cristian Jesus Lozano Mariscal, Lu Lu, Francesco Lucarelli, Andrew Ludwig, William Luszczak, Yang Lyu, Wing Yan Ma, James Madsen, Kendall Mahn, Yuya Makino, Sarah Mancina, Ioana Codrina Maris, Reina H Maruyama, K Mase, Thomas McElroy, Frank McNally, James Vincent Mead, K Meagher, Andres Medina, Maximilian Meier, Stephan Andrew Meighen-Berger, Jessie Micallef, Daniela Mockler, Teresa Montaruli, Roger Moore, R Morse, Marjon Moulai, Richard Naab, Ryo Nagai, Uwe Naumann, Jannis Necker, Le Viet Nguyen, Hans Niederhausen, Mehr Nisa, Sarah Nowicki, Dave Nygren, Anna Obertacke Pollmann, Marie Oehler, A Olivas, Erin O'Sullivan, Hershal Pandya, Daria Pankova, Nahee Park, Grant Parker, Ek Narayan Paudel, Larissa Paul, Carlos Perez de los Heros, Lilly Peters, Josh Peterson, Saskia Philippen, Damian Pieloth, Sarah Pieper, Martin Pittermann, A Pizzuto, M Plum, Yuiry Popovych, Alessio Porcelli, Maria Prado Rodriguez, P Buford Price, Brandom Pries, Gerald Przybylski, Christoph Raab, Amirreza Raissi, Mohamed Rameez, K Rawlins, Immacolata Carmen Rea, Abdul Rehman, Patrick Reichherzer, René Reimann, Giovanni Renzi, Elisa Resconi, Simeon Reusch, Wolfgang Rhode, Mike Richman, Benedikt Riedel, Ella Roberts, Sally Robertson, Gerrit Roellinghoff, Martin Rongen, Carsten Rott, Tim Ruhe, Dirk Ryckbosch, Devyn Rysewyk Cantu, Ibrahim Safa, Julian Saffer, Sebastian Sanchez Herrera, Alexander Sandrock, Joakim Sandroos, Marcos Santander, Subir Sarkar, Sourav Sarkar, Konstancja Satalecka, Maximilian Karl Scharf, Merlin Schaufel, Harald Schieler, Sebastian Schindler, P Schlunder, Torsten Schmidt, Austin Schneider, Judith Schneider, Frank Schröder, Lisa Johanna Schumacher, Georg Schwefer, Steve Sclafani, D Seckel, Surujhdeo Seunarine, Ankur Sharma, S Shefali, Manuel Silva, Barbara Skrzypek, Ben Smithers, Robert Snihur, Jan Soedingrekso, Dennis Soldin, Christian Spannfellner, Glenn Spiczak, Christian Spiering, Juliana Stachurska, Michael Stamatikos, Todor Stanev, Robert Stein, Joeran Stettner, A Steuer, T Stezelberger, Timo Sturwald, Thomas Stuttard, GW Sullivan, I Taboada, Frederik Tenholt, Samvel Ter-Antonyan, S Tilav, Franziska Tischbein, Kirsten Tollefson, Lenka Tomankova, Christoph Tönnis, Simona Toscano, Delia Tosi, Alexander Trettin, Maria Tselengidou, Chunfai Tung, Andrea Turcati, Roxanne Turcotte, Colin Turley, Jean Pierre Twagirayezu, Bunheng Ty, Martin Unland Elorrieta, Nora Valtonen-Mattila, Justin Vandenbroucke, Nick van Eijndhoven, David Vannerom, Jakob van Santen, Stef Verpoest, Matthias Vraeghe, C Walck, Timothyblake Watson, Chris Weaver, Philip Weigel, Andreas Weindl, Matthew Weiss, Jan Weldert, Chris Wendt, Johannes Werthebach, Mark Weyrauch, Nathan Whitehorn, CH Wiebusch, Dawn Williams, Martin Wolf, Kurt Woschnagg, Gerrit Wrede, Johan Wulff, Xianwu Xu, Yiqian Xu, Juan Pablo Yanez, S Yoshida, Shiqi Yu, Tianlu Yuan, Zelong Zhang

Certification of incompatible measurements using quantum steering

ArXiv 2107.02937 (2021)

Authors:

Shubhayan Sarkar, Debashis Saha, Remigiusz Augusiak

Hydrodynamic dispersion relations at finite coupling

Journal of High Energy Physics Springer Science and Business Media LLC 2021:6 (2021) 180

Authors:

Sašo Grozdanov, Andrei O Starinets, Petar Tadić

Abstract:

<jats:title>A<jats:sc>bstract</jats:sc> </jats:title><jats:p>By using holographic methods, the radii of convergence of the hydrodynamic shear and sound dispersion relations were previously computed in the <jats:inline-formula><jats:alternatives><jats:tex-math>$$ \mathcal{N} $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>N</mml:mi> </mml:math></jats:alternatives></jats:inline-formula> = 4 supersymmetric Yang-Mills theory at infinite ’t Hooft coupling and infinite number of colours. Here, we extend this analysis to the domain of large but finite ’t Hooft coupling. To leading order in the perturbative expansion, we find that the radii grow with increasing inverse coupling, contrary to naive expectations. However, when the equations of motion are solved using a qualitative non-perturbative resummation, the dependence on the coupling becomes piecewise continuous and the initial growth is followed by a decrease. The piecewise nature of the dependence is related to the dynamics of branch point singularities of the energy-momentum tensor finite-temperature two-point functions in the complex plane of spatial momentum squared. We repeat the study using the Einstein-Gauss-Bonnet gravity as a model where the equations can be solved fully non-perturbatively, and find the expected decrease of the radii of convergence with the effective inverse coupling which is also piecewise continuous. Finally, we provide arguments in favour of the non-perturbative approach and show that the presence of non-perturbative modes in the quasinormal spectrum can be indirectly inferred from the analysis of perturbative critical points.</jats:p>

Do supernovae indicate an accelerating universe?

The European Physical Journal Special Topics Springer Science and Business Media LLC (2021)

Authors:

Roya Mohayaee, Mohamed Rameez, Subir Sarkar

Abstract:

AbstractIn the late 1990’s, observations of two directionally-skewed samples of, in total, 93 Type Ia supernovae were analysed in the framework of the Friedmann–Lemaître–Robertson–Walker (FLRW) cosmology. Assuming these to be ‘standard(isable) candles’ it was inferred that the Hubble expansion rate is accelerating as if driven by a positive Cosmological Constant $$\varLambda $$ Λ in Einstein’s theory of gravity. This is still the only direct evidence for the ‘dark energy’ that is the dominant component of today’s standard $$\varLambda $$ Λ CDM cosmological model. Other data such as baryon acoustic oscillations (BAO) in the large-scale distribution of galaxies, temperature fluctuations in the cosmic microwave background (CMB), measurement of stellar ages, the rate of growth of structure, etc are all ‘concordant’ with this model but do not provide independent evidence for accelerated expansion. The recent discussions about whether the inferred acceleration is real rests on analysis of a larger sample of 740 SNe Ia which shows that these are not quite standard candles, and more importantly highlights the ‘corrections’ that are applied to analyse the data in the FLRW framework. The latter holds in the reference frame in which the CMB is isotropic, whereas observations are carried out in our heliocentric frame in which the CMB has a large dipole anisotropy. This is assumed to be of kinematic origin i.e. due to our non-Hubble motion driven by local inhomogeneity in the matter distribution which has grown under gravity from primordial density perturbations traced by the CMB fluctuations. The $$\varLambda $$ Λ CDM model predicts how this peculiar velocity should fall off as the averaging scale is raised and the universe becomes sensibly homogeneous. However observations of the local ‘bulk flow’ are inconsistent with this expectation and convergence to the CMB frame is not seen. Moreover, the kinematic interpretation implies a corresponding dipole in the sky distribution of high redshift quasars, which is rejected by observations at $$4.9\sigma $$ 4.9 σ . Hence the peculiar velocity corrections employed in supernova cosmology are inconsistent and discontinuous within the data. The acceleration of the Hubble expansion rate is in fact anisotropic at $$3.9\sigma $$ 3.9 σ and aligned with the bulk flow. Thus dark energy could be an artefact of analysing data assuming that we are idealised observers in an FLRW universe, when in fact the real universe is inhomogeneous and anisotropic out to distances large enough to impact on cosmological analyses.

Observing invisible axions with gravitational waves

Journal of Cosmology and Astroparticle Physics IOP Publishing 2021:06 (2021) 034

Authors:

Marco Gorghetto, Edward Hardy, Horia Nicolaescu

Abstract:

If the Peccei-Quinn symmetry associated to an axion has ever been restored after inflation, axion strings inevitably produce a contribution to the stochastic gravitational wave background. Combining effective field theory analysis with numerical simulations, we show that the resulting gravitational wave spectrum has logarithmic deviations from a scale invariant form with an amplitude that is significantly enhanced at low frequencies. As a result, a single ultralight axion-like particle with a decay constant larger than 1014 GeV and any mass between 10-18 eV and 10-28 eV leads to an observable gravitational wave spectrum and is compatible with constraints on the post-inflationary scenario from dark matter overproduction, isocurvature and dark radiation. Since the spectrum extends over a wide range of frequencies, the resulting signal could be detected by multiple experiments. We describe straightforward ways in which the Peccei-Quinn symmetry can be restored after inflation for such decay constants. We also comment on the recent possible NANOgrav signal in light of our results.