Parton showers beyond leading logarithmic accuracy
Physical Review Letters American Physical Society 125 (2020) 052002
Abstract:
Parton showers are among the most widely used tools in collider physics. Despite their key importance, none so far have been able to demonstrate accuracy beyond a basic level known as leading logarithmic order, with ensuing limitations across a broad spectrum of physics applications. In this Letter, we propose criteria for showers to be considered next-to-leading logarithmic accurate. We then introduce new classes of shower, for final-state radiation, that satisfy the main elements of these criteria in the widely used large-NC limit. As a proof of concept, we demonstrate these showers’ agreement with all-order analytical next-to-leading logarithmic calculations for a range of observables, something never so far achieved for any parton shower.Instantons and hilbert functions
Physical Review D American Physical Society 102 (2020) 026019
Abstract:
We study superpotentials from worldsheet instantons in heterotic Calabi-Yau compactifications for vector bundles constructed from line bundle sums, monads and extensions. Within a certain class of manifolds and for certain second homology classes, we derive simple necessary conditions for a non-vanishing instanton superpotential. These show that non-vanishing instanton superpotentials are rare and require a specific pattern for the bundle construction. For the class of monad and extension bundles with this pattern, we derive a sufficient criterion for non-vanishing instanton superpotentials based on an affine Hilbert function. This criterion shows that a non-zero instanton superpotential is common within this class. The criterion can be checked using commutative algebra methods only and depends on the topological data defining the Calabi-Yau X and the vector bundle V.IceCube Search for Neutrinos Coincident with Compact Binary Mergers from LIGO-Virgo's First Gravitational-Wave Transient Catalog
The Astrophysical Journal: an international review of astronomy and astronomical physics American Astronomical Society (2020)
Abstract:
Using the IceCube Neutrino Observatory, we search for high-energy neutrino emission coincident with compact binary mergers observed by the LIGO and Virgo gravitational wave (GW) detectors during their first and second observing runs. We present results from two searches targeting emission coincident with the sky localization of each gravitational wave event within a 1000 second time window centered around the reported merger time. One search uses a model-independent unbinned maximum likelihood analysis, which uses neutrino data from IceCube to search for point-like neutrino sources consistent with the sky localization of GW events. The other uses the Low-Latency Algorithm for Multi-messenger Astrophysics, which incorporates astrophysical priors through a Bayesian framework and includes LIGO-Virgo detector characteristics to determine the association between the GW source and the neutrinos. No significant neutrino coincidence is seen by either search during the first two observing runs of the LIGO-Virgo detectors. We set upper limits on the time-integrated neutrino emission within the 1000 second window for each of the 11 GW events. These limits range from 0.02-0.7 $\mathrm{GeV~cm^{-2}}$. We also set limits on the total isotropic equivalent energy, $E_{\mathrm{iso}}$, emitted in high-energy neutrinos by each GW event. These limits range from 1.7 $\times$ 10$^{51}$ - 1.8 $\times$ 10$^{55}$ erg. We conclude with an outlook for LIGO-Virgo observing run O3, during which both analyses are running in real time.NNLO QCD$\times$EW corrections to on-shell $Z$ production
(2020)