Status and prospects for the IceCube Neutrino Observatory

Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment Elsevier 952 (2020) 161650

Authors:

Dawn Williams, for the IceCube Collaboration

Index formulae for line bundle cohomology on complex surfaces

Fortschritte der Physik / Progress of Physics Wiley 68:2 (2020) 1900086

Authors:

Callum Brodie, Andrei Constantin, Rehan Deen, Andre Lukas

Abstract:

We conjecture and prove closed-form index expressions for the cohomology dimensions of line bundles on del Pezzo and Hirzebruch surfaces. Further, for all compact toric surfaces we provide a simple algorithm which allows expression of any line bundle cohomology in terms of an index. These formulae follow from general theorems we prove for a wider class of surfaces. In particular, we construct a map that takes any effective line bundle to a nef line bundle while preserving the zeroth cohomology dimension. For complex surfaces, these results explain the appearance of piecewise polynomial equations for cohomology and they are a first step towards understanding similar formulae recently obtained for Calabi-Yau three-folds.

Thermal dark energy

Physical Review D American Physical Society (APS) 101:2 (2020) 023503

Authors:

Edward Hardy, Susha Parameswaran

Development of an analysis to probe the neutrino mass ordering with atmospheric neutrinos using three years of IceCube DeepCore data: IceCube Collaboration

European Physical Journal C 80:1 (2020)

Authors:

MG Aartsen, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, C Alispach, K Andeen, T Anderson, I Ansseau, G Anton, C Argüelles, J Auffenberg, S Axani, P Backes, H Bagherpour, X Bai, A Barbano, SW Barwick, V Baum, R Bay, JJ Beatty, KH Becker, JB Tjus, S BenZvi, D Berley, E Bernardini, DZ Besson, G Binder, D Bindig, E Blaufuss, S Blot, C Bohm, M Börner, S Böser, O Botner, E Bourbeau, J Bourbeau, F Bradascio, J Braun, HP Bretz, S Bron, J Brostean-Kaiser, A Burgman, RS Busse, T Carver, C Chen, E Cheung, D Chirkin, K Clark, L Classen, GH Collin, JM Conrad, P Coppin, P Correa, DF Cowen, R Cross, P Dave, JPAM de André, C De Clercq, JJ DeLaunay, H Dembinski, K Deoskar, S De Ridder, P Desiati, KD de Vries, G de Wasseige, M de With, T DeYoung, A Diaz, JC Díaz-Vélez, H Dujmovic, M Dunkman, E Dvorak, B Eberhardt, T Ehrhardt, B Eichmann, P Eller, JJ Evans, PA Evenson, S Fahey, AR Fazely, J Felde, K Filimonov, C Finley, A Franckowiak, E Friedman, A Fritz, TK Gaisser, J Gallagher, E Ganster, S Garrappa, L Gerhardt, K Ghorbani, T Glauch, T Glüsenkamp, A Goldschmidt, JG Gonzalez, D Grant, Z Griffith

Abstract:

© 2020, The Author(s). The Neutrino Mass Ordering (NMO) remains one of the outstanding questions in the field of neutrino physics. One strategy to measure the NMO is to observe matter effects in the oscillation pattern of atmospheric neutrinos above ∼1GeV, as proposed for several next-generation neutrino experiments. Moreover, the existing IceCube DeepCore detector can already explore this type of measurement. We present the development and application of two independent analyses to search for the signature of the NMO with three years of DeepCore data. These analyses include a full treatment of systematic uncertainties and a statistically-rigorous method to determine the significance for the NMO from a fit to the data. Both analyses show that the dataset is fully compatible with both mass orderings. For the more sensitive analysis, we observe a preference for normal ordering with a p-value of pIO= 15.3 % and CL s= 53.3 % for the inverted ordering hypothesis, while the experimental results from both analyses are consistent within their uncertainties. Since the result is independent of the value of δCP and obtained from energies Eν≳5GeV, it is complementary to recent results from long-baseline experiments. These analyses set the groundwork for the future of this measurement with more capable detectors, such as the IceCube Upgrade and the proposed PINGU detector.

Analytic results for deep-inelastic scattering at NNLO QCD with the nested soft-collinear subtraction scheme

European Physical Journal C Springer Nature 80:1 (2020) 8

Authors:

Konstantin Asteriadis, Fabrizio Caola, Kirill Melnikov, Raoul Röntsch