Neutrino oscillation studies with IceCube-DeepCore
Abstract:
IceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle and performance, the method used to make these calculations, as well as the results, is detailed. Finally, the future prospects of IceCube-DeepCore and the next generation of neutrino experiments at the South Pole (IceCube-Gen2, specifically the PINGU sub-detector) are briefly discussed.Sums of random matrices and the Potts model on random planar maps
The deconfining phase transition of SO(N) gauge theories in 2+1 dimensions
Abstract:
We calculate the deconfining temperature of SO(N ) gauge theories in 2+1 dimensions, and determine the order of the phase transition as a function of N , for various values of N ∈ [4, 16]. We do so by extrapolating our lattice results to the infinite volume limit, and then to the continuum limit, for each value of N. We then extrapolate to the N =∞ limit and observe that the SO(N) and SU(N) deconfining temperatures agree in that limit. We find that the the deconfining temperatures of all the SO(N ) gauge theories appear to follow a single smooth function of N , despite the lack of a non-trivial centre for odd N . We also compare the deconfining temperatures of SO(6) with SU(4), and of SO(4) with SU(2) × SU(2), motivated by the fact that these pairs of gauge theories share the same Lie algebras.