Searches for small-scale anisotropies from neutrino point sources with three years of IceCube data
Astroparticle Physics Elsevier 66 (2015) 39-52
Abstract:
Recently, IceCube found evidence for a diffuse signal of astrophysical neutrinos in an energy range of $60\,\mathrm{TeV}$ to the $\mathrm{PeV}$-scale. The origin of those events, being a key to understanding the origin of cosmic rays, is still an unsolved question. So far, analyses have not succeeded to resolve the diffuse signal into point-like sources. Searches including a maximum-likelihood-ratio test, based on the reconstructed directions and energies of the detected down- and up-going neutrino candidates, were also performed on IceCube data leading to the exclusion of bright point sources. In this paper, we present two methods to search for faint neutrino point sources in three years of IceCube data, taken between 2008 and 2011. The first method is an autocorrelation test, applied separately to the northern and southern sky. The second method is a multipole analysis, which expands the measured data in the northern hemisphere into spherical harmonics and uses the resulting expansion coefficients to separate signal from background. With both methods, the results are consistent with the background expectation with a slightly more sparse spatial distribution, corresponding to an underfluctuation. Depending on the assumed number of sources, the resulting upper limit on the flux per source in the northern hemisphere for an $E^{-2}$ energy spectrum ranges from $1.5 \cdot 10^{-8}\,\mathrm{GeV}/(\mathrm{cm}^2 \mathrm{s})$, in the case of one assumed source, to $4 \cdot 10^{-10} \,\mathrm{GeV}/(\mathrm{cm}^2 \mathrm{s})$, in the case of $3500$ assumed sources.Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube
Physical Review D American Physical Society D91:2 (2015) 022001-022001
Abstract:
The IceCube Neutrino Observatory was designed primarily to search for high-energy (TeV--PeV) neutrinos produced in distant astrophysical objects. A search for $\gtrsim 100$~TeV neutrinos interacting inside the instrumented volume has recently provided evidence for an isotropic flux of such neutrinos. At lower energies, IceCube collects large numbers of neutrinos from the weak decays of mesons in cosmic-ray air showers. Here we present the results of a search for neutrino interactions inside IceCube's instrumented volume between 1~TeV and 1~PeV in 641 days of data taken from 2010--2012, lowering the energy threshold for neutrinos from the southern sky below 10 TeV for the first time, far below the threshold of the previous high-energy analysis. Astrophysical neutrinos remain the dominant component in the southern sky down to 10 TeV. From these data we derive new constraints on the diffuse astrophysical neutrino spectrum, $\Phi_{\nu} = 2.06^{+0.4}_{-0.3} \times 10^{-18} \left({E_{\nu}}/{10^5 \,\, \rm{GeV}} \right)^{-2.46 \pm 0.12} {\rm {GeV^{-1} \, cm^{-2} \, sr^{-1} \, s^{-1}} } $, as well as the strongest upper limit yet on the flux of neutrinos from charmed-meson decay in the atmosphere, 1.52 times the benchmark theoretical prediction used in previous IceCube results at 90\% confidence.A 3.55 keV line from DM → a → γ: predictions for cool-core and non-cool-core clusters
Journal of Cosmology and Astroparticle Physics IOP Publishing 2015:01 (2015) 019-019
ALP conversion and the soft X-ray excess in the outskirts of the Coma cluster
Journal of Cosmology and Astroparticle Physics IOP Publishing 2015:01 (2015) 011-011
Full-sky analysis of cosmic-ray anisotropy with IceCube and HAWC
Proceedings of Science 30-July-2015 (2015)