Closing in on Asymmetric Dark Matter I: Model independent limits for interactions with quarks

(2012)

Authors:

John March-Russell, James Unwin, Stephen M West

FastJet user manual

European Physical Journal C Springer Nature 72:3 (2012) 1896

Authors:

Matteo Cacciari, Gavin P Salam, Gregory Soyez

Multigraph models for causal quantum gravity and scale dependent spectral dimension

ArXiv 1202.6322 (2012)

Authors:

Georgios Giasemidis, John F Wheater, Stefan Zohren

Abstract:

We study random walks on ensembles of a specific class of random multigraphs which provide an "effective graph ensemble" for the causal dynamical triangulation (CDT) model of quantum gravity. In particular, we investigate the spectral dimension of the multigraph ensemble for recurrent as well as transient walks. We investigate the circumstances in which the spectral dimension and Hausdorff dimension are equal and show that this occurs when rho, the exponent for anomalous behaviour of the resistance to infinity, is zero. The concept of scale dependent spectral dimension in these models is introduced. We apply this notion to a multigraph ensemble with a measure induced by a size biased critical Galton-Watson process which has a scale dependent spectral dimension of two at large scales and one at small scales. We conclude by discussing a specific model related to four dimensional CDT which has a spectral dimension of four at large scales and two at small scales.

Multigraph models for causal quantum gravity and scale dependent spectral dimension

(2012)

Authors:

Georgios Giasemidis, John F Wheater, Stefan Zohren

Multiyear search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors

Physical Review D - Particles, Fields, Gravitation and Cosmology 85:4 (2012)

Authors:

R Abbasi, Y Abdou, T Abu-Zayyad, M Ackermann, J Adams, K Andeen, JA Aguilar, M Ahlers, D Altmann, J Auffenberg, X Bai, M Baker, SW Barwick, R Bay, JL Bazo Alba, K Beattie, JJ Beatty, S Bechet, JK Becker, KH Becker, M Bell, ML Benabderrahmane, S Benzvi, J Berdermann, P Berghaus, D Berley, E Bernardini, D Bertrand, DZ Besson, D Bindig, M Bissok, E Blaufuss, J Blumenthal, DJ Boersma, C Bohm, D Bose, S Böser, O Botner, L Brayeur, AM Brown, S Buitink, KS Caballero-Mora, M Carson, M Casier, D Chirkin, B Christy, F Clevermann, S Cohen, C Colnard, DF Cowen, AH Cruz Silva, MV D'Agostino, M Danninger, J Daughhetee, JC Davis, C De Clercq, T Degner, F Descamps, P Desiati, G De Vries-Uiterweerd, T Deyoung, JC Díaz-Vélez, M Dierckxsens, J Dreyer, JP Dumm, M Dunkman, J Eisch, RW Ellsworth, O Engdegård, S Euler, PA Evenson, O Fadiran, AR Fazely, A Fedynitch, J Feintzeig, T Feusels, K Filimonov, C Finley, T Fischer-Wasels, S Flis, A Franckowiak, R Franke, TK Gaisser, J Gallagher, L Gerhardt, L Gladstone, T Glüsenkamp, A Goldschmidt, JA Goodman, D Góra, D Grant, T Griesel, A Groß, S Grullon, M Gurtner, C Ha, A Haj Ismail, A Hallgren, F Halzen, K Han

Abstract:

A search for an excess of muon neutrinos from dark matter annihilations in the Sun has been performed with the AMANDA-II neutrino telescope using data collected in 812 days of live time between 2001 and 2006 and 149 days of live time collected with the AMANDA-II and the 40-string configuration of IceCube during 2008 and early 2009. No excess over the expected atmospheric neutrino background has been observed. We combine these results with the previously published IceCube limits obtained with data taken during 2007 to obtain a total live time of 1065 days. We provide an upper limit at 90% confidence level on the annihilation rate of captured neutralinos in the Sun, as well as the corresponding muon flux limit at the Earth, both as functions of the neutralino mass in the range 50-5000GeV. We also derive a limit on the neutralino-proton spin-dependent and spin-independent cross section. The limits presented here improve the previous results obtained by the collaboration between a factor of 2 and 5, as well as extending the neutralino masses probed down to 50GeV. The spin-dependent cross section limits are the most stringent so far for neutralino masses above 200GeV, and well below direct search results in the mass range from 50GeV to 5TeV. © 2012 American Physical Society.