Search for signatures of magnetically-induced alignment in the arrival directions measured by the Pierre Auger Observatory
ArXiv 1111.2472 (2011)
Abstract:
We present the results of an analysis of data recorded at the Pierre Auger Observatory in which we search for groups of directionally-aligned events (or `multiplets') which exhibit a correlation between arrival direction and the inverse of the energy. These signatures are expected from sets of events coming from the same source after having been deflected by intervening coherent magnetic fields. The observation of several events from the same source would open the possibility to accurately reconstruct the position of the source and also measure the integral of the component of the magnetic field orthogonal to the trajectory of the cosmic rays. We describe the largest multiplets found and compute the probability that they appeared by chance from an isotropic distribution. We find no statistically significant evidence for the presence of multiplets arising from magnetic deflections in the present data.Contributions from the Cherenkov Telescope Array (CTA) Consortium to the ICRC 2011
ArXiv 1111.2183 (2011)
Abstract:
The Cherenkov Telescope Array (CTA) is a project for the construction of a next generation VHE gamma ray observatory with full sky coverage. Its aim is improving by about one order of magnitude the sensitivity of the existing installations, covering about 5 decades in energy (from few tens of GeV to above a hundred TeV) and having enhanced angular and energy resolutions. During 2010 the project became a truly global endeavour carried out by a consortium of about 750 collaborators from Europe, Asia, Africa and the North and South Americas. Also during 2010 the CTA project completed its Design Study phase and started a Preparatory Phase that is expected to extend for three years and should lead to the starting of the construction of CTA. An overview of the CTA Consortium activities project will be given.Two hundred heterotic standard models on smooth Calabi-Yau threefolds
Physical Review D - Particles, Fields, Gravitation and Cosmology 84:10 (2011)
Abstract:
We construct heterotic standard models by compactifying on smooth Calabi-Yau three-folds in the presence of purely Abelian internal gauge fields. A systematic search over complete intersection Calabi-Yau manifolds with less than six Kähler parameters leads to over 200 such models which we present. Each of these models has precisely the matter spectrum of the minimal supersymmetric standard model, at least one pair of Higgs doublets, the standard model gauge group, and no exotics. For about 100 of these models there are four additional U(1) symmetries which are Green-Schwarz anomalous and, hence, massive. In the remaining cases, three U(1) symmetries are anomalous, while the fourth, massless one can be spontaneously broken by singlet vacuum expectation values. The presence of additional global U(1) symmetries, together with the possibility of switching on singlet vacuum expectation values, leads to a rich phenomenology which is illustrated for a particular example. Our database of standard models, which can be further enlarged by simply extending the computer-based search, allows for a detailed and systematic phenomenological analysis of string standard models, covering issues such as the structure of Yukawa couplings, R-parity violation, proton stability, and neutrino masses. © 2011 American Physical Society.Resolving astrophysical uncertainties in dark matter direct detection
ArXiv 1111.0292 (2011)
Abstract:
We study the impact of the assumed velocity distribution of galactic dark matter particles on the interpretation of results from nuclear recoil detectors. By converting experimental data to variables that make the astrophysical unknowns explicit, different experiments can be compared without implicit assumptions concerning the dark matter halo. We extend this framework to include the annual modulation signal, as well as multiple target elements. Recent results from DAMA, CoGeNT and CRESST-II can be brought into agreement if the velocity distribution is very anisotropic and thus allows a large modulation fraction. However constraints from CDMS and XENON cannot be evaded by appealing to such astrophysical uncertainties alone.Resolving astrophysical uncertainties in dark matter direct detection
(2011)