Scattering and Sequestering of Blow-Up Moduli in Local String Models

ArXiv 1109.4153 (2011)

Authors:

Joseph P Conlon, Lukas T Witkowski

Abstract:

We study the scattering and sequestering of blow-up fields - either local to or distant from a visible matter sector - through a CFT computation of the dependence of physical Yukawa couplings on the blow-up moduli. For a visible sector of D3-branes on orbifold singularities we compute the disk correlator < \tau_s^{(1)} \tau_s^{(2)} ... \tau_s^{(n)} \psi \psi \phi > between orbifold blow-up moduli and matter Yukawa couplings. For n = 1 we determine the full quantum and classical correlator. This result has the correct factorisation onto lower 3-point functions and also passes numerous other consistency checks. For n > 1 we show that the structure of picture-changing applied to the twist operators establishes the sequestering of distant blow-up moduli at disk level to all orders in \alpha'. We explain how these results are relevant to suppressing soft terms to scales parametrically below the gravitino mass. By giving vevs to the blow-up fields we can move into the smooth limit and thereby derive CFT results for the smooth Swiss-cheese Calabi-Yaus that appear in the Large Volume Scenario.

Scattering and Sequestering of Blow-Up Moduli in Local String Models

(2011)

Authors:

Joseph P Conlon, Lukas T Witkowski

The integrated Sachs-Wolfe imprints of cosmic superstructures: a problem for ΛCDM

ArXiv 1109.4126 (2011)

Authors:

Seshadri Nadathur, Shaun Hotchkiss, Subir Sarkar

Abstract:

A crucial diagnostic of the \Lambda CDM cosmological model is the integrated Sachs-Wolfe (ISW) effect of large-scale structure on the cosmic microwave background (CMB). The ISW imprint of superstructures of size \sim100\;h^{-1} Mpc at redshift $z\sim0.5$ has been detected with $>4\sigma$ significance, however it has been noted that the signal is much larger than expected. We revisit the calculation using linear theory predictions in \Lambda CDM cosmology for the number density of superstructures and their radial density profile, and take possible selection effects into account. While our expected signal is larger than previous estimates, it is still inconsistent by $>3\sigma$ with the observation. If the observed signal is indeed due to the ISW effect then huge, extremely underdense voids are far more common in the observed universe than predicted by \Lambda CDM.

The integrated Sachs-Wolfe imprints of cosmic superstructures: a problem for \Lambda CDM

(2011)

Authors:

Seshadri Nadathur, Shaun Hotchkiss, Subir Sarkar

Flavored Dark Matter, and Its Implications for Direct Detection and Colliders

(2011)

Authors:

Prateek Agrawal, Steve Blanchet, Zackaria Chacko, Can Kilic