Erratum to "Atmospheric effects on extensive air showers observed with the surface detector of the Pierre Auger observatory" [Astroparticle Physics 32(2) (2009), 89-99] (DOI:10.1016/j.astropartphys.2009.06.004)

Astroparticle Physics 33:1 (2010) 65-67

Authors:

J Abraham, P Abreu, M Aglietta, C Aguirre, EJ Ahn, D Allard, I Allekotte, J Allen, P Allison, J Alvarez-Muñiz, M Ambrosio, L Anchordoqui, S Andringa, A Anzalone, C Aramo, E Arganda, S Argirò, K Arisaka, F Arneodo, F Arqueros, T Asch, H Asorey, P Assis, J Aublin, M Ave, G Avila, T Bäcker, D Badagnani, KB Barber, AF Barbosa, SLC Barroso, B Baughman, P Bauleo, JJ Beatty, T Beau, BR Becker, KH Becker, A Bellétoile, JA Bellido, S BenZvi, C Berat, P Bernardini, X Bertou, PL Biermann, P Billoir, O Blanch-Bigas, F Blanco, C Bleve, H Blümer, M Boháčová, C Bonifazi, R Bonino, N Borodai, J Brack, P Brogueira, WC Brown, R Bruijn, P Buchholz, A Bueno, RE Burton, NG Busca, KS Caballero-Mora, L Caramete, R Caruso, W Carvalho, A Castellina, O Catalano, L Cazon, R Cester, J Chauvin, A Chiavassa, JA Chinellato, A Chou, J Chudoba, J Chye, RW Clay, E Colombo, R Conceição, B Connolly, F Contreras, J Coppens, A Cordier, U Cotti, S Coutu, CE Covault, A Creusot, A Criss, J Cronin, A Curutiu, S Dagoret-Campagne, R Dallier, K Daumiller, BR Dawson, RM de Almeida, M De Domenico, C De Donato, SJ de Jong, G De La Vega, WJM de Mello, JRT de Mello Neto

Erratum: Search for high-energy Muon neutrinos from the "naked-eye" GRB080319b with the icecube neutrino telescope (The Astrophysical Journal (2009) 701 (1721))

Astrophysical Journal 708:1 (2010) 911-912

Authors:

R Abbasi, Y Abdou, M Ackermann, J Adams, M Ahlers, K Andeen, J Auffenberg, X Bai, M Baker, SW Barwick, R Bay, JLB Alba, K Beattie, S Bechet, JK Becker, KH Becker, ML Benabderrahmane, J Berdermann, P Berghaus, D Berley, E Bernardini, D Bertrand, DZ Besson, M Bissok, E Blaufuss, DJ Boersma, C Bohm, J Bolmont, S Böser, O Botner, L Bradley, J Braun, D Breder, T Burgess, T Castermans, D Chirkin, B Christy, J Clem, S Cohen, DF Cowen, MV D'Agostino, M Danninger, CT Day, C De Clercq, L Demirörs, O Depaepe, F Descamps, P Desiati, G De Vries-Uiterweerd, T Deyoung, JC Diaz-Velez, J Dreyer, JP Dumm, MR Duvoort, WR Edwards, R Ehrlich, J Eisch, RW Ellsworth, O Engdegrd, S Euler, PA Evenson, O Fadiran, AR Fazely, T Feusels, K Filimonov, C Finley, MM Foerster, BD Fox, A Franckowiak, R Franke, TK Gaisser, J Gallagher, R Ganugapati, L Gerhardt, L Gladstone, A Goldschmidt, JA Goodman, R Gozzini, D Grant, T Griesel, A Gro, S Grullon, RM Gunasingha, M Gurtner, C Ha, A Hallgren, F Halzen, K Han, K Hanson, Y Hasegawa, J Heise, K Helbing, P Herquet, S Hickford, GC Hill, KD Hoffman, K Hoshina, D Hubert, W Huelsnitz, JP Hül

Exploring positive monad bundles and a new heterotic standard model

Journal of High Energy Physics 2010:2 (2010)

Authors:

LB Anderson, J Gray, YH He, A Lukas

Abstract:

A complete analysis of all heterotic Calabi-Yau compactifications based on positive two-term monad bundles over favourable complete intersection Calabi-Yau threefolds is performed. We show that the original data set of about 7000 models contains 91 standard-like models which we describe in detail. A closer analysis of Wilson-line breaking for these models reveals that none of them gives rise to precisely the matter field content of the standard model. We conclude that the entire set of positive two-term monads on complete intersection Calabi-Yau manifolds is ruled out on phenomenological grounds. We also take a first step in analyzing the larger class of non-positive monads. In particular, we construct a supersymmetric heterotic standard model within this class. This model has the standard model gauge group and an additional U(1) B-L symmetry, precisely three families of quarks and leptons, one pair of Higgs doublets and no anti-families or exotics of any kind. © 2010 SISSA.

Freeze-in production of FIMP dark matter

Journal of High Energy Physics 2010:3 (2010)

Authors:

LJ Hall, K Jedamzik, J March-Russell, SM West

Abstract:

We propose an alternate, calculable mechanism of dark matter genesis, "thermal freeze-in", involving a Feebly Interacting Massive Particle (FIMP) interacting so feebly with the thermal bath that it never attains thermal equilibrium. As with the conventional "thermal freeze-out" production mechanism, the relic abundance reflects a combination of initial thermal distributions together with particle masses and couplings that can be measured in the laboratory or astrophysically. The freeze-in yield is IR dominated by low temperatures near the FIMP mass and is independent of unknown UV physics, such as the reheat temperature after inflation. Moduli and modulinos of string theory compactifications that receive mass from weak-scale supersymmetry breaking provide implementations of the freeze-in mechanism, as do models that employ Dirac neutrino masses or GUT-scale- suppressed interactions. Experimental signals of freeze-in and FIMPs can be spectacular, including the production of new metastable coloured or charged particles at the LHC as well as the alteration of big bang nucleosynthesis.

Heterotic models from vector bundles on toric Calabi-Yau manifolds

Journal of High Energy Physics 2010:5 (2010)

Authors:

YH He, SJ Lee, A Lukas

Abstract:

We systematically approach the construction of heterotic E8 × E8Calabi-Yau models, based on compact Calabi-Yau three-folds arising from toric geometry and vector bundles on these manifolds. We focus on a simple class of 101 such three-folds with smooth ambient spaces, on which we perform an exhaustive scan and find all positive monad bundles with SU(N), N = 3, 4, 5 structure groups, subject to the heterotic anomaly cancellation constraint. We find that anomaly-free positive monads exist on only 11 of these toric three-folds with a total number of bundles of about 2000. Only 21 of these models, all of them on three-folds realizable as hypersurfaces in products of projective spaces, allow for three families of quarks and leptons. We also perform a preliminary scan over the much larger class of semi-positive monads which leads to about 44000 bundles with 280 of them satisfying the three-family constraint. These 280 models provide a starting point for heterotic model building based on toric three-folds. © SISSA 2010.