Erratum to "Atmospheric effects on extensive air showers observed with the surface detector of the Pierre Auger observatory" [Astroparticle Physics 32(2) (2009), 89-99] (DOI:10.1016/j.astropartphys.2009.06.004)
Astroparticle Physics 33:1 (2010) 65-67
Erratum: Search for high-energy Muon neutrinos from the "naked-eye" GRB080319b with the icecube neutrino telescope (The Astrophysical Journal (2009) 701 (1721))
Astrophysical Journal 708:1 (2010) 911-912
Exploring positive monad bundles and a new heterotic standard model
Journal of High Energy Physics 2010:2 (2010)
Abstract:
A complete analysis of all heterotic Calabi-Yau compactifications based on positive two-term monad bundles over favourable complete intersection Calabi-Yau threefolds is performed. We show that the original data set of about 7000 models contains 91 standard-like models which we describe in detail. A closer analysis of Wilson-line breaking for these models reveals that none of them gives rise to precisely the matter field content of the standard model. We conclude that the entire set of positive two-term monads on complete intersection Calabi-Yau manifolds is ruled out on phenomenological grounds. We also take a first step in analyzing the larger class of non-positive monads. In particular, we construct a supersymmetric heterotic standard model within this class. This model has the standard model gauge group and an additional U(1) B-L symmetry, precisely three families of quarks and leptons, one pair of Higgs doublets and no anti-families or exotics of any kind. © 2010 SISSA.Freeze-in production of FIMP dark matter
Journal of High Energy Physics 2010:3 (2010)
Abstract:
We propose an alternate, calculable mechanism of dark matter genesis, "thermal freeze-in", involving a Feebly Interacting Massive Particle (FIMP) interacting so feebly with the thermal bath that it never attains thermal equilibrium. As with the conventional "thermal freeze-out" production mechanism, the relic abundance reflects a combination of initial thermal distributions together with particle masses and couplings that can be measured in the laboratory or astrophysically. The freeze-in yield is IR dominated by low temperatures near the FIMP mass and is independent of unknown UV physics, such as the reheat temperature after inflation. Moduli and modulinos of string theory compactifications that receive mass from weak-scale supersymmetry breaking provide implementations of the freeze-in mechanism, as do models that employ Dirac neutrino masses or GUT-scale- suppressed interactions. Experimental signals of freeze-in and FIMPs can be spectacular, including the production of new metastable coloured or charged particles at the LHC as well as the alteration of big bang nucleosynthesis.Heterotic models from vector bundles on toric Calabi-Yau manifolds
Journal of High Energy Physics 2010:5 (2010)