Towards Realistic String Vacua From Branes At Singularities
ArXiv 0810.5660 (2008)
Authors:
Joseph P Conlon, Anshuman Maharana, Fernando Quevedo
Abstract:
We report on progress towards constructing string models incorporating both
realistic D-brane matter content and moduli stabilisation with dynamical
low-scale supersymmetry breaking. The general framework is that of local
D-brane models embedded into the LARGE volume approach to moduli stabilisation.
We review quiver theories on del Pezzo $n$ ($dP_n$) singularities including
both D3 and D7 branes. We provide supersymmetric examples with three
quark/lepton families and the gauge symmetries of the Standard, Left-Right
Symmetric, Pati-Salam and Trinification models, without unwanted chiral
exotics. We describe how the singularity structure leads to family symmetries
governing the Yukawa couplings which may give mass hierarchies among the
different generations. We outline how these models can be embedded into compact
Calabi-Yau compactifications with LARGE volume moduli stabilisation, and state
the minimal conditions for this to be possible. We study the general structure
of soft supersymmetry breaking. At the singularity all leading order
contributions to the soft terms (both gravity- and anomaly-mediation) vanish.
We enumerate subleading contributions and estimate their magnitude. We also
describe model-independent physical implications of this scenario. These
include the masses of anomalous and non-anomalous U(1)'s and the generic
existence of a new hyperweak force under which leptons and/or quarks could be
charged. We propose that such a gauge boson could be responsible for the ghost
muon anomaly recently found at the Tevatron's CDF detector.