Four-point functions and kaon decays in a minimal AdS/QCD model
ArXiv hep-ph/0612010 (2006)
Abstract:
We study the predictions of holographic QCD for various observable four-point quark flavour current-current correlators. The dual 5-dimensional bulk theory we consider is a $SU(3)_L \times SU(3)_R$ Yang Mills theory in a slice of $AdS_5$ spacetime with boundaries. Particular UV and IR boundary conditions encode the spontaneous breaking of the dual 4D global chiral symmetry down to the $SU(3)_V$ subgroup. We explain in detail how to calculate the 4D four-point quark flavour current-current correlators using the 5D holographic theory, including interactions. We use these results to investigate predictions of holographic QCD for the $\Delta I = 1/2$ rule for kaon decays and the $B_K$ parameter. The results agree well in comparison with experimental data, with an accuracy of 25% or better. The holographic theory automatically includes the contributions of the meson resonances to the four-point correlators. The correlators agree well in the low-momentum and high-momentum limit, in comparison with chiral perturbation theory and perturbative QCD results, respectively.Four-point functions and kaon decays in a minimal AdS/QCD model
(2006)
Limits on the high-energy gamma and neutrino fluxes from the SGR 1806-20 giant flare of 27 December 2004 with the AMANDA-II detector.
Phys Rev Lett 97:22 (2006) 221101
Abstract:
On 27 December 2004, a giant gamma flare from the Soft Gamma-Ray Repeater 1806-20 saturated many satellite gamma-ray detectors, being the brightest transient event ever observed in the Galaxy. AMANDA-II was used to search for down-going muons indicative of high-energy gammas and/or neutrinos from this object. The data revealed no significant signal, so upper limits (at 90% C.L.) on the normalization constant were set: 0.05(0.5) TeV-1 m;{-2} s;{-1} for gamma=-1.47 (-2) in the gamma flux and 0.4(6.1) TeV-1 m;{-2} s;{-1} for gamma=-1.47 (-2) in the high-energy neutrino flux.Photon and dilepton production in supersymmetric Yang-Mills plasma
Journal of High Energy Physics 2006:12 (2006)
Abstract:
By weakly gauging one of the U(1) subgroups of the R-symmetry group, script N sign = 4 super-Yang-Mills theory can be coupled to electromagnetism, thus allowing a computation of photon production and related phenomena in a QCD-like non-Abelian plasma at both weak and strong coupling. We compute photon and dilepton emission rates from finite temperature script N sign = 4 supersymmetric Yang-Mills plasma both perturbatively at weak coupling to leading order, and non-perturbatively at strong coupling using the AdS/CFT duality conjecture. Comparison of the photo-emission spectra for script N sign = 4 plasma at weak coupling, script N sign = 4 plasma at strong coupling, and QCD at weak coupling reveals several systematic trends which we discuss. We also evaluate the electric conductivity of script N sign = 4 plasma in the strong coupling limit, and to leading-log order at weak coupling. Current-current spectral functions in the strongly coupled theory exhibit hydrodynamic peaks at small frequency, but otherwise show no structure which could be interpreted as well-defined thermal resonances in the high-temperature phase. © SISSA 2006.Einstein's Universe: The Challenge of Dark Energy
Chapter in The Legacy of Albert Einstein, World Scientific Publishing (2006) 207-224