Accurate Baryon Acoustic Oscillations Reconstruction via Semidiscrete Optimal Transport
Physical Review Letters, Volume 128, Issue 20, article id.201302
Abstract:
Optimal transport theory has recently re-emerged as a vastly resourceful field of mathematics with elegant applications across physics and computer science. Harnessing methods from geometry processing, we report on the efficient implementation for a specific problem in cosmology—the reconstruction of the linear density field from low redshifts, in particular the recovery of the baryonic acoustic oscillation (BAO) scale. We demonstrate our algorithm's accuracy by retrieving the BAO scale in noiseless cosmological simulations that are dedicated to cancel cosmic variance; we find uncertainties to be reduced by a factor of 4.3 compared with performing no reconstruction, and a factor of 3.1 compared with standard reconstruction.
All-flavor constraints on nonstandard neutrino interactions and generalized matter potential with three years of IceCube DeepCore data
Physical Review D: Particles, Fields, Gravitation and Cosmology American Physical Society
Abstract:
We report constraints on nonstandard neutrino interactions (NSI) from the observation of atmospheric neutrinos with IceCube, limiting all individual coupling strengths from a single dataset. Furthermore, IceCube is the first experiment to constrain flavor-violating and nonuniversal couplings simultaneously. Hypothetical NSI are generically expected to arise due to the exchange of a new heavy mediator particle. Neutrinos propagating in matter scatter off fermions in the forward direction with negligible momentum transfer. Hence the study of the matter effect on neutrinos propagating in the Earth is sensitive to NSI independently of the energy scale of new physics. We present constraints on NSI obtained with an all-flavor event sample of atmospheric neutrinos based on three years of IceCube DeepCore data. The analysis uses neutrinos arriving from all directions, with reconstructed energies between 5.6 GeV and 100 GeV. We report constraints on the individual NSI coupling strengths considered singly, allowing for complex phases in the case of flavor-violating couplings. This demonstrates that IceCube is sensitive to the full NSI flavor structure at a level competitive with limits from the global analysis of all other experiments. In addition, we investigate a generalized matter potential, whose overall scale and flavor structure are also constrained.Calabi-Yau Manifolds and SU(3) Structure
Journal of High Energy Physics Springer Verlag (Germany)
Abstract:
We show that non-trivial SU(3) structures can be constructed on large classes of Calabi-Yau three-folds. Specifically, we focus on Calabi-Yau three-folds constructed as complete intersections in products of projective spaces, although we expect similar methods to apply to other constructions and also to Calabi-Yau four-folds. Among the wide range of possible SU(3) structures we find Strominger-Hull systems, suitable for heterotic or type II string compactifications, on all complete intersection Calabi-Yau manifolds. These SU(3) structures of Strominger-Hull type have a non-vanishing and non-closed three-form flux which needs to be supported by source terms in the associated Bianchi identity. We discuss the possibility of finding such source terms and present first steps towards their explicit construction. Provided suitable sources exist, our methods lead to Calabi-Yau compactifications of string theory with a non Ricci-flat, physical metric which can be written down explicitly and in analytic form.Characteristics of the diffuse astrophysical electron and tau neutrino flux with six years of IceCube high energy cascade data
Physical Review Letters American Physical Society
Abstract:
We report on the first measurement of the astrophysical neutrino flux using particle showers (cascades) in IceCube data from 2010 -- 2015. Assuming standard oscillations, the astrophysical neutrinos in this dedicated cascade sample are dominated ($\sim 90 \%$) by electron and tau flavors. The flux, observed in the energy range from $16\,\mathrm{TeV} $ to $2.6\,\mathrm{PeV}$, is consistent with a single power-law as expected from Fermi-type acceleration of high energy particles at astrophysical sources. We find the flux spectral index to be $\gamma=2.53\pm0.07$ and a flux normalization for each neutrino flavor of $\phi_{astro} = 1.66^{+0.25}_{-0.27}$ at $E_{0} = 100\, \mathrm{TeV}$. This flux of electron and tau neutrinos is in agreement with IceCube muon neutrino results and with all-neutrino flavor results. Results from fits assuming more complex neutrino flux models suggest a flux softening at high energies and a flux hardening at low energies (p-value $\ge 0.06$).Closed flux tubes and their string description in D=2+1 SU(N) gauge theories
Journal of High Energy Physics