Seasonal reappearance of HCl in the atmosphere of Mars during the Mars year 35 dusty season

Astronomy and Astrophysics EDP Sciences 647:March 2021 (2021) A161

Authors:

Kevin Olsen, A Trokhimovskiy, L Montabone, Aa Fedorova, M Luginin, F Lefèvre, Oi Korablev, F Montmessin, F Forget, E Millour, L Baggio, Juan Alday Parejo, Cf Wilson, Patrick Irwin, Da Belyaev, A Patrakeev, A Shakun

Abstract:

HCl was discovered in the atmosphere of Mars for the first time during the global dust storm in Mars year (MY) 34 (July 2018) using the Atmospheric Chemistry Suite mid-infrared channel (ACS MIR) on the ExoMars Trace Gas Orbiter. The simultaneity of variations in dust and HCl, and a correlation between water vapour and HCl, led to the proposal of a novel surface-atmosphere coupling analogous to terrestrial HCl production in the troposphere from salt aerosols. After seasonal dust activity restarted in MY 35 (August 2020), we have been monitoring HCl activity to determine whether such a coupling was validated. Here we present a new technique for analyzing the absorption features of trace gases close to the ACS MIR noise level and report that HCl mixing ratios are observed to rapidly increase in both hemispheres coincidentally with the onset of the MY 35 perihelion dust season. We present the temporal evolution of the vertical distribution of HCl (0.1–6 ppbv) and of dust activity in both hemispheres. We also report two observations of > 2 ppbv HCl below 10 km in the northern hemisphere during the aphelion period.

Updates to the Oxford Space Environment Goniometer to measure visible wavelength bidirectional reflectance distribution functions in ambient conditions

Review of Scientific Instruments AIP Publishing 92:3 (2021) 034504

Authors:

Rowan Curtis, Tristram Warren, Neil Bowles

Abstract:

Understanding how the surfaces of airless planetary bodies—such as the Moon—scatter visible light enables constraints to be placed on their surface properties and top boundary layer inputs to be set within thermal models. Remote sensing instruments—such as Diviner onboard the Lunar Reconnaissance Orbiter—measure thermal emission and visible light scattering functions across visible (∼0.38–0.7 µm) to thermal infrared (TIR) wavelengths (∼0.7–350 μm). To provide ground support measurements for such instruments, the Oxford Space Environment Goniometer (OSEG) was built. Initially, the OSEG focused on measuring TIR directional emissivity functions for regolith and regolith simulant samples in a simulated space environment, but it has recently been modified to measure visible wavelength Bidirectional Reflectance Distribution Functions (BRDFs) of samples in ambient conditions. Laboratory-measured BRDFs can be used (1) to test and to help interpret models—such as the Hapke photometric model—and (2) as visible scattering function inputs for thermal models. This paper describes the modifications to and initial calibration measurements taken by the Visible Oxford Space Environment Goniometer with a 532 nm laser, and details how this setup can be used to measure BRDFs of regolith and regolith simulant samples of airless planetary bodies.

Saturn´s Stratospheric Hazes From HST Ultraviolet Imaging

Copernicus Publications (2021)

Authors:

José Francisco Sanz Requena, Santiago Pérez Hoyos, Agustín Sánchez-Lavega, Henrik Melin, Leigh Fletcher, Patrick Irwin

Variations in spectral reflectivity and vertical cloud structure of Jupiter’s Great Red Spot

Copernicus Publications (2021)

Authors:

Asier Anguiano-Arteaga, Santiago Pérez-Hoyos, Agustín Sánchez-Lavega, Patrick GJ Irwin

Recent Mid-Infrared Through Submillimeter Observations of Uranus and Neptune

Copernicus Publications (2021)

Authors:

Glenn Orton, James Sinclair, Leigh Fletcher, Naomi Rowe-Gurney, Michael Roman, Patrick Irwin, Heidi Hammel