Color and aerosol changes in Jupiter after a North Temperate Belt disturbance
Icarus Elsevier BV 352 (2020) 114031
The transit spectra of Earth and Jupiter
ICARUS 242 (2014) 172-187
Stormy water on Mars: the distribution and saturation of atmospheric water during the dusty season
Science American Association for the Advancement of Science (2020)
Abstract:
The loss of water from Mars to space is thought to result from the transport of water to the upper atmosphere, where it is dissociated to hydrogen and escapes the planet. Recent observations have suggested large, rapid seasonal intrusions of water into the upper atmosphere, boosting the hydrogen abundance. We use the Atmospheric Chemistry Suite on the ExoMars Trace Gas Orbiter to characterize the water distribution by altitude. Water profiles during the 2018–2019 southern spring and summer stormy seasons show that high-altitude water is preferentially supplied close to perihelion, and supersaturation occurs even when clouds are present. This implies that the potential for water to escape from Mars is higher than previously thought.Volcanic gas plumes’ effect on the spectrum of Venus
Icarus 438 (2025)
Abstract:
Venus is home to thousands of volcanoes, with a wide range of volumes and sizes. Its surface is relatively young, with a temperature of approximately 735 K and an atmosphere of 92 bar. Past and possible ongoing volcanic outgassing is expected to provide a source to the sustenance of this massive atmosphere, dominated by CO2 and SO2. The lower atmosphere can be investigated in the near-infrared transparency windows on the nightside, such as the 2.3μm thermal emission window, which provides a chance of detection of species with volcanic origin, such as water vapor. The Planetary Spectrum Generator was used to simulate the nightside 2.3μm thermal emission window of Venus. We simulated the effect of a volcanic gas plume rising to a ceiling altitude, for species such as H2O, CO, OCS, HF and SO2. The sensitivity of the radiance spectrum at different wavelengths was explored as an attempt to qualitatively access detection for future measurements of both ground-based and space-instrumentation. We conclude from our qualitative analysis that for the H2O, CO and OCS plumes simulated there is potential to achieve a detection in the future, given a minimum required signal-to-noise ratio of 50. For SO2 and HF plumes, a higher signal-to-noise ratio would be needed.The bolometric Bond albedo and energy balance of Uranus
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025)