Constraints on Neptune’s haze structure and formation from VLT observations in the H-band
Icarus Elsevier 350 (2020) 113808
Abstract:
A 1-dimensional microphysics model has been used to constrain the structure and formation of haze in Neptune's atmosphere. These simulations were coupled to a radiative-transfer and retrieval code (NEMESIS) to model spectral observations of Neptune in the H-band performed by the SINFONI Integral Field Unit Spectrometer on the Very Large Telescope (VLT) in 2013. It was found that observations in the H-band and with emission angles ≤60° are largely unaffected by the imaginary refractive index of haze particles, allowing a notable reduction of the free parameters required to fit the observations. Our analysis shows a total haze production rate of (2.61 ± 0.18) × 10−14 kg m−2 s−1, about 10 times larger than that found in Uranus's atmosphere, and a particle electric charge of q = 8.6 ± 1.1 electrons per μm radius at latitudes between 5 and 15° S. This haze production rate in Neptune results in haze optical depths about 10 times greater than those in Uranus. The effective radius reff was found to be 0.22 ± 0.01 and 0.26 ± 0.02 μm at the 0.1 and 1-bar levels, respectively, with haze number densities of 8.48+1.78−1.31 and 9.31+2.52−1.91 particles per cm3. The fit at weak methane-absorbing wavelengths reveals also the presence of a tropospheric cloud with a total optical depth >10 at 1.46 μm. The tropospheric cloud base altitude was found near the 2.5-bar level, although this estimation may be only representative of the top of a thicker and deeper cloud. Our analysis leads to haze opacities about 3.5 times larger than that derived from Voyager-2 observations (Moses et al., 1995). This larger opacity indicates a haze production rate 2 times larger at least. To study this difference haze opacity or production rate, we performed a timescale analysis with our microphysical model to estimate the time required for haze particles to grow and settle out. Although this analysis shows haze timescales (∼15 years) shorter than the time lapsed between Voyager-2 observations and 2013, the solar illumination at the top of the atmosphere has not varied significantly during this period (at the studied latitudes) to explain the increase in haze production. This difference in haze production rate derived for these two periods may arise from: a) the fact that in our analysis we employed spectral observations in the infrared (H-band), while Moses et al. (1995) used photometric images taken at 5 different filters in the visible. While high-phase-angle Voyager observations are more sensitive to small haze particles and at altitudes above the 0.1-bar level, the haze constraints derived from VLT spectra in H-band are limited to pressures greater than 0.1 bar. As a result of the different phase angles of the two set of observations, differences in the estimation of M0 may arise from the use of Mie phase functions as well. b) our 1-dimensional model does not account for latitudinal redistributions of the haze by dynamics. A possible meridional transport of haze with wind velocities greater than ∼0.03 m s−1 would result in dynamics timescales shorter than 15 years and thus might explain the observed variations in the haze production rate during this period. Compared with our estimations, photochemical models point to even larger production rates on Neptune (by a factor of 2.4). Assuming that the photochemical simulations are correct, we found that this discrepancy can be explained if haze particles evaporate before reaching the tropospheric-cloud levels. This scenario would decrease the cumulative haze opacity above the 1-bar level, and thus a larger haze production rate would be required to fit our observations. However, to validate this haze vertical structure future microphysical simulations that include the evaporation rates of haze particles are required.Long-duration Venus lander for seismic and atmospheric science
Planetary and Space Science Elsevier 190 (2020) 104961
Abstract:
An exciting and novel science mission concept called Seismic and Atmospheric Exploration of Venus (SAEVe) has been developed which uses high-temperature electronics to enable a three-order magnitude increase in expected surface life (120 Earth days) over what has been achieved to date. This enables study of long-term, variable phenomena such as the seismicity of Venus and near surface weather, near surface energy balance, and atmospheric chemical composition. SAEVe also serves as a critical pathfinder for more sophisticated landers in the future. For example, first order seismic measurements by SAEVe will allow future missions to deliver better seismometers and systems to support the yet unknown frequency and magnitude of Venus events. SAEVe is focused on science that can be realized with low data volume instruments and will most benefit from temporal operations. The entire mission architecture and operations maximize science while minimizing energy usage and physical size and mass. The entire SAEVe system including its protective entry system is estimated to be around 45 kg and approximately 0.6 m diameter. These features allow SAEVe to be relatively cost effective and be easily integrated onto a Venus orbiter mission. The technologies needed to implement SAEVe are currently in development by several funded activities. Component and system level work is ongoing under NASA’s Long Lived Insitu Solar System Explorer (LLISSE) project and the HOTTech program. . LLISSE, is a NASA project to develop a small Venus lander that will operate on the surface of Venus for 60 days and measure variations in meteorology, radiance, and atmospheric chemistry. LLISSE is developing a full-function engineering model of a Venus lander that contains essentially all the core capabilities of SAEVe thus greatly reducing the technology risk to SAEVe. The SAEVe long duration Venus lander promises exciting new science and is an ideal complimentary element to many future Venus orbiter missions being proposed or planned today.Understanding and mitigating biases when studying inhomogeneous emission spectra with JWST
Monthly Notices of the Royal Astronomical Society Royal Astronomical Society (2020)
Abstract:
Exoplanet emission spectra are often modelled assuming that the hemisphere observed is well represented by a horizontally homogenised atmosphere. However this approximation will likely fail for planets with a large temperature contrast in the James Webb Space Telescope (JWST) era, potentially leading to erroneous interpretations of spectra. We first develop an analytic formulation to quantify the signal-to-noise ratio and wavelength coverage necessary to disentangle temperature inhomogeneities from a hemispherically averaged spectrum. We find that for a given signal-to-noise ratio, observations at shorter wavelengths are better at detecting the presence of inhomogeneities. We then determine why the presence of an inhomogeneous thermal structure can lead to spurious molecular detections when assuming a fully homogenised planet in the retrieval process. Finally, we quantify more precisely the potential biases by modelling a suite of hot Jupiter spectra, varying the spatial contributions of a hot and a cold region, as would be observed by the different instruments of JWST/NIRSpec. We then retrieve the abundances and temperature profiles from the synthetic observations. We find that in most cases, assuming a homogeneous thermal structure when retrieving the atmospheric chemistry leads to biased results, and spurious molecular detection. Explicitly modelling the data using two profiles avoids these biases, and is statistically supported provided the wavelength coverage is wide enough, and crucially also spanning shorter wavelengths. For the high contrast used here, a single profile with a dilution factor performs as well as the two-profile case, with only one additional parameter compared to the 1-D approach.Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data
Nature Geoscience Springer Nature 13:3 (2020) 213-220
Abstract:
Mars’s seismic activity and noise have been monitored since January 2019 by the seismometer of the InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) lander. At night, Mars is extremely quiet; seismic noise is about 500 times lower than Earth’s microseismic noise at periods between 4 s and 30 s. The recorded seismic noise increases during the day due to ground deformations induced by convective atmospheric vortices and ground-transferred wind-generated lander noise. Here we constrain properties of the crust beneath InSight, using signals from atmospheric vortices and from the hammering of InSight’s Heat Flow and Physical Properties (HP3) instrument, as well as the three largest Marsquakes detected as of September 2019. From receiver function analysis, we infer that the uppermost 8–11 km of the crust is highly altered and/or fractured. We measure the crustal diffusivity and intrinsic attenuation using multiscattering analysis and find that seismic attenuation is about three times larger than on the Moon, which suggests that the crust contains small amounts of volatiles.Ice giant circulation patterns: Implications for atmospheric probes
Space Science Reviews Springer 216 (2020) 21