Remote-sensing characterization of major Solar System bodies with the Twinkle space telescope
Journal of Astronomical Telescopes Instruments and Systems SPIE 5:1 (2019) 014006
Abstract:
Remote-sensing observations of Solar System objects with a space telescope offer a key method of understanding celestial bodies and contributing to planetary formation and evolution theories. The capabilities of Twinkle, a space telescope in a low Earth orbit with a 0.45-m mirror, to acquire spectroscopic data of Solar System targets in the visible and infrared are assessed. Twinkle is a general observatory that provides on-demand observations of a wide variety of targets within wavelength ranges that are currently not accessible using other space telescopes or that are accessible only to oversubscribed observatories in the short-term future. We determine the periods for which numerous Solar System objects could be observed and find that Solar System objects are regularly observable. The photon flux of major bodies is determined for comparison to the sensitivity and saturation limits of Twinkle's instrumentation and we find that the satellite's capability varies across the three spectral bands (0.4 to 1, 1.3 to 2.42, and 2.42 to 4.5 μm). We find that for a number of targets, including the outer planets, their large moons, and bright asteroids, the model created predicts that with short exposure times, high-resolution spectra (R ~ 250, λ < 2.42 μm; R ~ 60, λ > 2.42 μm) could be obtained with signal-to-noise ratio (SNR) of > 100 with exposure times of <300 s. For other targets (e.g., Phobos), an SNR > 10 would be achievable in 300 s (or less) for spectra at Twinkle's native resolution. Fainter or smaller targets (e.g., Pluto) may require multiple observations if resolution or data quality cannot be sacrificed. Objects such as the outer dwarf planet Eris are deemed too small, faint or distant for Twinkle to obtain photometric or spectroscopic data of reasonable quality (SNR > 10) without requiring large amounts of observation time. Despite this, the Solar System is found to be permeated with targets that could be readily observed by Twinkle.Seasonal evolution of temperatures in Titan's lower stratosphere
Icarus (2019)
Abstract:
© 2019 Elsevier Inc. The Cassini mission offered us the opportunity to monitor the seasonal evolution of Titan's atmosphere from 2004 to 2017, i.e. half a Titan year. The lower part of the stratosphere (pressures greater than 10 mbar) is a region of particular interest as there are few available temperature measurements, and because its thermal response to the seasonal and meridional insolation variations undergone by Titan remain poorly known. In this study, we measure temperatures in Titan's lower stratosphere between 6 mbar and 25 mbar using Cassini/CIRS spectra covering the whole duration of the mission (from 2004 to 2017) and the whole latitude range. We can thus characterize the meridional distribution of temperatures in Titan's lower stratosphere, and how it evolves from northern winter (2004) to summer solstice (2017). Our measurements show that Titan's lower stratosphere undergoes significant seasonal changes, especially at the South pole, where temperature decreases by 19 K at 15 mbar in 4 years.Wave Activity in Jupiter's North Equatorial Belt From Near-Infrared Reflectivity Observations
Geophysical Research Letters 46:3 (2019) 1232-1241
Abstract:
©2019. American Geophysical Union. All Rights Reserved. High spatial resolution images of Jupiter at 1.58–2.28 μm are used to track and characterize a wave pattern observed in 2017 at a planetocentric latitude of 14°N. The wave pattern has a wave number of 18 and spans ∼5° in latitude. One bright crest remains stationary in System III longitude, while the remaining crests move slowly westward. The bright and dark regions of the near-infrared wave pattern are caused by variations in the vertical location of the upper tropospheric haze layer. A comparison with thermal infrared observations shows a correlation with temperature anomalies in the upper troposphere. The results are consistent with a Rossby wave, generated by flow around a stationary vortex.Seasonal evolution of temperatures in Titan's lower stratosphere
(2019)
Abundance measurements of Titan's stratospheric HCN, HC3N, C3H4, and CH3CN from ALMA observations
Icarus 319 (2019) 417-432