Remote-sensing characterization of major Solar System bodies with the Twinkle space telescope

Journal of Astronomical Telescopes Instruments and Systems SPIE 5:1 (2019) 014006

Authors:

B Edwards, S Lindsay, G Savini, G Tinetti, C Arena, Neil Bowles, M Tessenyi

Abstract:

Remote-sensing observations of Solar System objects with a space telescope offer a key method of understanding celestial bodies and contributing to planetary formation and evolution theories. The capabilities of Twinkle, a space telescope in a low Earth orbit with a 0.45-m mirror, to acquire spectroscopic data of Solar System targets in the visible and infrared are assessed. Twinkle is a general observatory that provides on-demand observations of a wide variety of targets within wavelength ranges that are currently not accessible using other space telescopes or that are accessible only to oversubscribed observatories in the short-term future. We determine the periods for which numerous Solar System objects could be observed and find that Solar System objects are regularly observable. The photon flux of major bodies is determined for comparison to the sensitivity and saturation limits of Twinkle's instrumentation and we find that the satellite's capability varies across the three spectral bands (0.4 to 1, 1.3 to 2.42, and 2.42 to 4.5 μm). We find that for a number of targets, including the outer planets, their large moons, and bright asteroids, the model created predicts that with short exposure times, high-resolution spectra (R ~ 250, λ < 2.42 μm; R ~ 60, λ > 2.42 μm) could be obtained with signal-to-noise ratio (SNR) of > 100 with exposure times of <300 s. For other targets (e.g., Phobos), an SNR > 10 would be achievable in 300 s (or less) for spectra at Twinkle's native resolution. Fainter or smaller targets (e.g., Pluto) may require multiple observations if resolution or data quality cannot be sacrificed. Objects such as the outer dwarf planet Eris are deemed too small, faint or distant for Twinkle to obtain photometric or spectroscopic data of reasonable quality (SNR > 10) without requiring large amounts of observation time. Despite this, the Solar System is found to be permeated with targets that could be readily observed by Twinkle.

Seasonal evolution of temperatures in Titan's lower stratosphere

Icarus (2019)

Authors:

M Sylvestre, NA Teanby, J Vatant d'Ollone, S Vinatier, B Bézard, S Lebonnois, PGJ Irwin

Abstract:

© 2019 Elsevier Inc. The Cassini mission offered us the opportunity to monitor the seasonal evolution of Titan's atmosphere from 2004 to 2017, i.e. half a Titan year. The lower part of the stratosphere (pressures greater than 10 mbar) is a region of particular interest as there are few available temperature measurements, and because its thermal response to the seasonal and meridional insolation variations undergone by Titan remain poorly known. In this study, we measure temperatures in Titan's lower stratosphere between 6 mbar and 25 mbar using Cassini/CIRS spectra covering the whole duration of the mission (from 2004 to 2017) and the whole latitude range. We can thus characterize the meridional distribution of temperatures in Titan's lower stratosphere, and how it evolves from northern winter (2004) to summer solstice (2017). Our measurements show that Titan's lower stratosphere undergoes significant seasonal changes, especially at the South pole, where temperature decreases by 19 K at 15 mbar in 4 years.

Wave Activity in Jupiter's North Equatorial Belt From Near-Infrared Reflectivity Observations

Geophysical Research Letters 46:3 (2019) 1232-1241

Authors:

RS Giles, GS Orton, AW Stephens, MH Wong, PGJ Irwin, JA Sinclair, F Tabataba-Vakili

Abstract:

©2019. American Geophysical Union. All Rights Reserved. High spatial resolution images of Jupiter at 1.58–2.28 μm are used to track and characterize a wave pattern observed in 2017 at a planetocentric latitude of 14°N. The wave pattern has a wave number of 18 and spans ∼5° in latitude. One bright crest remains stationary in System III longitude, while the remaining crests move slowly westward. The bright and dark regions of the near-infrared wave pattern are caused by variations in the vertical location of the upper tropospheric haze layer. A comparison with thermal infrared observations shows a correlation with temperature anomalies in the upper troposphere. The results are consistent with a Rossby wave, generated by flow around a stationary vortex.

Seasonal evolution of temperatures in Titan's lower stratosphere

(2019)

Authors:

M Sylvestre, NA Teanby, J Vatant d'Ollone, S Vinatier, B Bézard, S Lebonnois, PGJ Irwin

Abundance measurements of Titan's stratospheric HCN, HC3N, C3H4, and CH3CN from ALMA observations

Icarus 319 (2019) 417-432

Authors:

AE Thelen, CA Nixon, NJ Chanover, MA Cordiner, EM Molter, NA Teanby, PGJ Irwin, J Serigano, SB Charnley

Abstract:

© 2018 Elsevier Inc. Previous investigations have employed more than 100 close observations of Titan by the Cassini orbiter to elucidate connections between the production and distribution of Titan's vast, organic-rich chemical inventory and its atmospheric dynamics. However, as Titan transitions into northern summer, the lack of incoming data from the Cassini orbiter presents a potential barrier to the continued study of seasonal changes in Titan's atmosphere. In our previous work (Thelen et al., 2018), we demonstrated that the Atacama Large Millimeter/submillimeter Array (ALMA) is well suited for measurements of Titan's atmosphere in the stratosphere and lower mesosphere (∼100−500 km) through the use of spatially resolved (beam sizes < 1′′) flux calibration observations of Titan. Here, we derive vertical abundance profiles of four of Titan's trace atmospheric species from the same 3 independent spatial regions across Titan's disk during the same epoch (2012–2015): HCN, HC3N, C3H4, and CH3CN. We find that Titan's minor constituents exhibit large latitudinal variations, with enhanced abundances at high latitudes compared to equatorial measurements; this includes CH3CN, which eluded previous detection by Cassini in the stratosphere, and thus spatially resolved abundance measurements were unattainable. Even over the short 3-year period, vertical profiles and integrated emission maps of these molecules allow us to observe temporal changes in Titan's atmospheric circulation during northern spring. Our derived abundance profiles are comparable to contemporary measurements from Cassini infrared observations, and we find additional evidence for subsidence of enriched air onto Titan's south pole during this time period. Continued observations of Titan with ALMA beyond the summer solstice will enable further study of how Titan's atmospheric composition and dynamics respond to seasonal changes.