Latitudinal variability in Jupiter's tropospheric disequilibrium species: GeH4, AsH3 and PH3

Icarus Elsevier 289 (2016) 254-269

Authors:

Rohini Giles, L Fletcher, Patrick G Irwin

Abstract:

Jupiter's tropospheric composition is studied using high resolution spatially-resolved 5-mm observation from the CRIRES instrument at the Very Large Telescope. The high resolving power (R=96,000) allows us to spectrally resolve the line shapes of individual molecular species in Jupiter's troposphere and, by aligning the slit north-south along Jupiter's central meridian, we are able to search for any latitudinal variability. Despite the high spectral resolution, we find that there are significant degeneracies between the cloud structure and aerosol scattering properties that complicate the retrievals of tropospheric gaseous abundances and limit conclusions on any belt-zone variability. However, we do find evidence for variability between the equatorial regions of the planet and the polar regions. Arsine (AsH3) and phosphine (PH3) both show an enhancement at high latitudes, while the abundance of germane (GeH4) remains approximately constant. These observations contrast with the theoretical predictions from Wang et al. (2016) and we discuss the possible explanations for this difierence.

A consistent retrieval analysis of 10 Hot Jupiters observed in transmission

(2016)

Authors:

Joanna K Barstow, Suzanne Aigrain, Patrick GJ Irwin, David K Sing

Jupiter's para-H2 distribution from SOFIA/FORCAST and Voyager/IRIS 17-37 μm spectroscopy

Icarus Elsevier 286 (2016) 223-240

Authors:

Leigh N Fletcher, Imke de Pater, William T Reach, Michael H Wong, Glenn S Orton, Patrick Irwin, Robert D Gehrz

Abstract:

Spatially resolved maps of Jupiter’s far-infrared 17-37 μm hydrogen-helium collision-induced spectrum were acquired by the FORCAST instrument on the Stratospheric Observatory for Infrared Astronomy (SOFIA) in May 2014. Spectral scans in two grisms covered the broad S(0) and S(1) absorption lines, in addition to contextual imaging in eight broad-band filters (5-37 μm) with spatial resolutions of 2-4”. The spectra were inverted to map the zonal-mean temperature and para-H2 distribution (fp, the fraction of the para spin isomer with respect to the ortho spin isomer) in Jupiter’s upper troposphere (the 100-700 mbar range). We compared these to a reanalysis of Voyager-1 and -2 IRIS spectra covering the same spectral range. Tropospheric temperature contrasts match those identified by Voyager in 1979, within the limits of temporal variability consistent with previous investigations. Para-H2 increases from equator to pole, with low- fp air at the equator representing sub-equilibrium conditions (i.e., less para-H2 than expected from thermal equilibration), and high- fp air and possible super-equilibrium at higher latitudes. In particular, we confirm the continued presence of a region of high-fp air at high northern latitudes discovered by Voyager/IRIS, and an asymmetry with generally higher fp in the north than in the south. Far-IR aerosol opacity is not required to fit the data, but cannot be completely ruled out. We note that existing collision-induced absorption databases lack opacity from (H2)2 dimers, leading to under-prediction of the absorption near the S(0) and S(1) peaks. There appears to be no spatial correlation between para-H2 and tropospheric ammonia, phosphine and cloud opacity derived from Voyager/IRIS at mid-infrared wavelengths (7-15 μm). We note, however, that para-H2 tracks the similar latitudinal distribution of aerosols within Jupiter’s upper tropospheric and stratospheric hazes observed in reflected sunlight, suggesting that catalysis of hydrogen equilibration within the hazes (and not the main clouds) may govern the equator-to-pole gradient, with conditions closer to equilibrium at higher latitudes. This gradient is superimposed onto smaller-scale variations associated with regional advection of para-H2 at the equator and poles.

The Hera Saturn entry probe mission

PLANETARY AND SPACE SCIENCE 130 (2016) 80-103

Authors:

O Mousis, DH Atkinson, T Spilker, E Venkatapathy, J Poncy, R Frampton, A Coustenis, K Reh, J-P Lebreton, LN Fletcher, R Hueso, MJ Amato, A Colaprete, F Ferri, D Stam, P Wurz, S Atreya, S Aslam, DJ Banfield, S Calcutt, G Fischer, A Holland, C Keller, E Kessler, M Leese, P Levacher, A Morse, O Munoz, J-B Renard, S Sheridan, F-X Schmider, F Snik, JH Waite, M Bird, T Cavalie, M Deleuil, J Fortney, D Gautier, T Guillot, JI Lunine, B Marty, C Nixon, GS Orton, A Sanchez-Lavega

Habitable worlds with JWST : transit spectroscopy of the TRAPPIST-1 system?

Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press 461:1 (2016) L92-L96

Authors:

JK Barstow, Patrick Irwin

Abstract:

The recent discovery of three Earth-sized, potentially habitable planets around a nearby cool star, TRAPPIST-1, has provided three key targets for the upcoming James Webb Space Telescope (JWST). Depending on their atmospheric characteristics and precise orbit configurations, it is possible that any of the three planets may be in the liquid water habitable zone, meaning that they may be capable of supporting life. We find that present-day Earth levels of ozone, if present, would be detectable if JWST observes 60 transits for innermost planet 1b and 30 transits for 1c and 1d.