There is no Plan B for dealing with the climate crisis
BULLETIN OF THE ATOMIC SCIENTISTS Informa UK Limited 75:5 (2019) 215-221
Abstract:
© 2019, © 2019 Bulletin of the Atomic Scientists. To halt global warming, the emission of carbon dioxide into the atmosphere by human activities such as fossil fuel burning, cement production, and deforestation needs to be brought all the way to zero. The longer it takes to do so, the hotter the world will get. Lack of progress towards decarbonization has created justifiable panic about the climate crisis. This has led to an intensified interest in technological climate interventions that involve increasing the reflection of sunlight to space by injecting substances into the stratosphere which lead to the formation of highly reflective particles. When first suggested, such albedo modification schemes were introduced as a “Plan B,” in case the world economy fails to decarbonize, and this scenario has dominated much of the public perception of albedo modification as a savior waiting in the wings to protect the world against massive climate change arising from a failure to decarbonize. But because of the mismatch between the millennial persistence time of carbon dioxide and the sub-decadal persistence of stratospheric particles, albedo modification can never safely play more than a very minor role in the portfolio of solutions. There is simply no substitute for decarbonization.Impact of space weather on climate and habitability of terrestrial-type exoplanets
International Journal of Astrobiology Cambridge University Press (2019)
Abstract:
The search for life in the Universe is a fundamental problem of astrobiology and modern science. The current progress in the detection of terrestrial-type exoplanets has opened a new avenue in the characterization of exoplanetary atmospheres and in the search for biosignatures of life with the upcoming ground-based and space missions. To specify the conditions favourable for the origin, development and sustainment of life as we know it in other worlds, we need to understand the nature of global (astrospheric), and local (atmospheric and surface) environments of exoplanets in the habitable zones (HZs) around G-K-M dwarf stars including our young Sun. Global environment is formed by propagated disturbances from the planet-hosting stars in the form of stellar flares, coronal mass ejections, energetic particles and winds collectively known as astrospheric space weather. Its characterization will help in understanding how an exoplanetary ecosystem interacts with its host star, as well as in the specification of the physical, chemical and biochemical conditions that can create favourable and/or detrimental conditions for planetary climate and habitability along with evolution of planetary internal dynamics over geological timescales. A key linkage of (astro)physical, chemical and geological processes can only be understood in the framework of interdisciplinary studies with the incorporation of progress in heliophysics, astrophysics, planetary and Earth sciences. The assessment of the impacts of host stars on the climate and habitability of terrestrial (exo)planets will significantly expand the current definition of the HZ to the biogenic zone and provide new observational strategies for searching for signatures of life. The major goal of this paper is to describe and discuss the current status and recent progress in this interdisciplinary field in light of presentations and discussions during the NASA Nexus for Exoplanetary System Science funded workshop ‘Exoplanetary Space Weather, Climate and Habitability’ and to provide a new roadmap for the future development of the emerging field of exoplanetary science and astrobiology.Investigating the semiannual oscillation on Mars using data assimilation
Icarus Elsevier 333 (2019) 404-414
)
Abstract:
A Martian semiannual oscillation (SAO), similar to that in the Earths tropical stratosphere, is evident in the Mars Analysis Correction Data Assimilation reanalysis dataset (MACDA) version 1.0, not only in the tropics, but also extending to higher latitudes. Unlike on Earth, the Martian SAO is found not always to reverse its zonal wind direction, but only manifests itself as a deceleration of the dominant wind at certain pressure levels and latitudes. Singular System Analysis (SSA) is further applied on the zonal-mean zonal wind in different latitude bands to reveal the characteristics of SAO phenomena at different latitudes. The second pair of principal components (PCs) is usually dominated by a SAO signal, though the SAO signal can be strong enough to manifest itself also in the first pair of PCs. An analysis of terms in the Transformed Eulerian Mean equation (TEM) is applied in the tropics to further elucidate the forcing processes driving the tendency of the zonal-mean zonal wind. The zonal-mean meridional advection is found to correlate strongly with the observed oscillations of zonal-mean zonal wind, and supplies the majority of the westward (retrograde) forcing in the SAO cycle. The forcing due to various non-zonal waves supplies forcing to the zonal-mean zonal wind that is nearly the opposite of the forcing due to meridional advection above ∼3 Pa altitude, but it also partly supports the SAO between 40 Pa and 3 Pa. Some distinctive features occurring during the period of the Mars year (MY) 25 global-scale dust storm (GDS) are also notable in our diagnostic results with substantially stronger values of eastward and westward momentum in the second half of MY 25 and stronger forcing due to vertical advection, transient waves and thermal tidesTheoretical Reflectance Spectra of Earth-Like Planets through Their Evolutions: Impact of Clouds on the Detectability of Oxygen, Water, and Methane with Future Direct Imaging Missions
Astrophysical Journal American Astronomical Society (2019)
Atmospheric Variability Driven by Radiative Cloud Feedback in Brown Dwarfs and Directly Imaged Extrasolar Giant Planets
Astrophysical Journal American Astronomical Society 874:111 (2019)