Application of an evidence-based, out-patient treatment strategy for COVID-19: Multidisciplinary medical practice principles to prevent severe disease

Journal of the Neurological Sciences Elsevier 426 (2021) 117463

Authors:

Elliot M Frohman, Nicole R Villemarette-Pittman, Adriana Rodriguez, Robert Glanzman, Sarah Rugheimer, Oleg Komogortsev, Scott S Zamvil, Roberto Alejandro Cruz, Thomas C Varkey, Ashley N Frohman, Audrey R Frohman, Matthew S Parsons, Emily Heckmann Konkle, Teresa C Frohman

Abstract:

The COVID-19 pandemic has devastated individuals, families, and institutions throughout the world. Despite the breakneck speed of vaccine development, the human population remains at risk of further devastation. The decision to not become vaccinated, the protracted rollout of available vaccine, vaccine failure, mutational forms of the SARS virus, which may exhibit mounting resistance to our molecular strike at only one form of the viral family, and the rapid ability of the virus(es) to hitch a ride on our global transportation systems, means that we are will likely continue to confront an invisible, yet devastating foe. The enemy targets one of our human physiology’s most important and vulnerable life-preserving body tissues, our broncho-alveolar gas exchange apparatus.
Notwithstanding the fear and the fury of this microbe's potential to raise existential questions across the entire spectrum of human endeavor, the application of an early treatment intervention initiative may represent a crucial tool in our defensive strategy. This strategy is driven by evidence-based medical practice principles, those not likely to become antiquated, given the molecular diversity and mutational evolution of this very clever “world traveler”.

3D convection-resolving model of temperate, tidally-locked exoplanets

ArXiv 2104.05559 (2021)

Authors:

Maxence Lefèvre, Martin Turbet, Raymond Pierrehumbert

The Mega-MUSCLES spectral energy distribution of TRAPPIST-1

Astrophysical Journal IOP Publishing 911 (2021) 18

Authors:

David J Wilson, Cynthia S Froning, Girish M Duvvuri, Kevin France, Allison Youngblood, P Christian Schneider, Zachory Berta-Thompson, Alexander Brown, Andrea P Buccino, Suzanne Hawley, Jonathan Irwin, Lisa Kaltenegger, Adam Kowalski, Jeffrey Linsky, Ro Parke Loyd, Yamila Miguel, J Sebastian Pineda, Seth Redfield, Aki Roberge, Sarah Rugheimer, Feng Tian, Mariela Vieytes

Abstract:

We present a 5 Å–100 μm spectral energy distribution (SED) of the ultracool dwarf star TRAPPIST-1, obtained as part of the Mega-MUSCLES Treasury Survey. The SED combines ultraviolet and blue-optical spectroscopy obtained with the Hubble Space Telescope, X-ray spectroscopy obtained with XMM-Newton, and models of the stellar photosphere, chromosphere, transition region, and corona. A new differential emission measure model of the unobserved extreme-ultraviolet spectrum is provided, improving on the Lyα–EUV relations often used to estimate the 100–911 Å flux from low-mass stars. We describe the observations and models used, as well as the recipe for combining them into an SED. We also provide a semiempirical, noise-free model of the stellar ultraviolet spectrum based on our observations for use in atmospheric modeling of the TRAPPIST-1 planets.

Characterizing Regimes of Atmospheric Circulation in Terms of Their Global Superrotation

Journal of the Atmospheric Sciences American Meteorological Society 78:4 (2021) 1245-1258

Authors:

Neil T Lewis, Greg J Colyer, Peter L Read

Abstract:

<jats:title>Abstract</jats:title><jats:p>The global superrotation index <jats:italic>S</jats:italic> compares the integrated axial angular momentum of the atmosphere to that of a state of solid-body corotation with the underlying planet. The index <jats:italic>S</jats:italic> is similar to a zonal Rossby number, which suggests it may be a useful indicator of the circulation regime occupied by a planetary atmosphere. We investigate the utility of <jats:italic>S</jats:italic> for characterizing regimes of atmospheric circulation by running idealized Earthlike general circulation model experiments over a wide range of rotation rates Ω, 8Ω<jats:sub><jats:italic>E</jats:italic></jats:sub> to Ω<jats:sub><jats:italic>E</jats:italic></jats:sub>/512, where Ω<jats:sub><jats:italic>E</jats:italic></jats:sub> is Earth’s rotation rate, in both an axisymmetric and three-dimensional configuration. We compute <jats:italic>S</jats:italic> for each simulated circulation, and study the dependence of <jats:italic>S</jats:italic> on Ω. For all rotation rates considered, <jats:italic>S</jats:italic> is on the same order of magnitude in the 3D and axisymmetric experiments. For high rotation rates, <jats:italic>S</jats:italic> ≪ 1 and <jats:italic>S</jats:italic> ∝ Ω<jats:sup>−2</jats:sup>, while at low rotation rates <jats:italic>S</jats:italic> ≈ 1/2 = constant. By considering the limiting behavior of theoretical models for <jats:italic>S</jats:italic>, we show how the value of <jats:italic>S</jats:italic> and its local dependence on Ω can be related to the circulation regime occupied by a planetary atmosphere. Indices of <jats:italic>S</jats:italic> ≪ 1 and <jats:italic>S</jats:italic> ∝ Ω<jats:sup>−2</jats:sup> define a regime dominated by geostrophic thermal wind balance, and <jats:italic>S</jats:italic> ≈ 1/2 = constant defines a regime where the dynamics are characterized by conservation of angular momentum within a planetary-scale Hadley circulation. Indices of <jats:italic>S</jats:italic> ≫ 1 and <jats:italic>S</jats:italic> ∝ Ω<jats:sup>−2</jats:sup> define an additional regime dominated by cyclostrophic balance and strong equatorial superrotation that is not realized in our simulations.</jats:p>

Characterizing regimes of atmospheric circulation in terms of their global superrotation

Journal of the Atmospheric Sciences American Meteorological Society 78:4 (2021) 1245-1258

Authors:

Neil Lewis, Greg J Colyer, Peter L Read

Abstract:

The global superrotation index S compares the integrated axial angular momentum of the atmosphere to that of a state of solid-body corotation with the underlying planet. The index S is similar to a zonal Rossby number, which suggests it may be a useful indicator of the circulation regime occupied by a planetary atmosphere. We investigate the utility of S for characterizing regimes of atmospheric circulation by running idealized Earthlike general circulation model experiments over a wide range of rotation rates Ω, 8ΩE to ΩE/512, where ΩE is Earth’s rotation rate, in both an axisymmetric and three-dimensional configuration. We compute S for each simulated circulation, and study the dependence of S on Ω. For all rotation rates considered, S is on the same order of magnitude in the 3D and axisymmetric experiments. For high rotation rates, S ≪ 1 and S ∝ Ω−2, while at low rotation rates S ≈ 1/2 = constant. By considering the limiting behavior of theoretical models for S, we show how the value of S and its local dependence on Ω can be related to the circulation regime occupied by a planetary atmosphere. Indices of S ≪ 1 and S ∝ Ω−2 define a regime dominated by geostrophic thermal wind balance, and S ≈ 1/2 = constant defines a regime where the dynamics are characterized by conservation of angular momentum within a planetary-scale Hadley circulation. Indices of S ≫ 1 and S ∝ Ω−2 define an additional regime dominated by cyclostrophic balance and strong equatorial superrotation that is not realized in our simulations.