Reliable Detections of Atmospheres on Rocky Exoplanets with Photometric JWST Phase Curves

The Astrophysical Journal Letters 978:L40 (2025)

Authors:

Mark Hammond, Claire Marie Guimond, Tim Lichtenberg, Harrison Nicholls, Chloe Fisher, Rafael Luque, Tobias G. Meier, Jake Taylor, Quentin Changeat, Lisa Dang, Hamish C. F. C. Hay, Oliver Herbort, and Johanna Teske

Abstract:

The prevalence of atmospheres on rocky planets is one of the major questions in exoplanet astronomy, but there are currently no published unambiguous detections of atmospheres on any rocky exoplanets. The MIRI instrument on JWST can measure thermal emission from tidally locked rocky exoplanets orbiting small, cool stars. This emission is a function of their surface and atmospheric properties, potentially allowing detections of atmospheres. One way to find atmospheres is to search for lower dayside emission than would be expected for a blackbody planet. Another technique is to measure phase curves of thermal emission to search for nightside emission due to atmospheric heat redistribution. Here, we compare strategies for detecting atmospheres on rocky exoplanets. We simulate secondary eclipse and phase curve observations in the MIRI F1500W and F1280W filters for a range of surfaces (providing our open-access albedo data) and atmospheres on 30 exoplanets selected for their F1500W signal-to-noise ratio. We show that secondary eclipse observations are more degenerate between surfaces and atmospheres than suggested in previous work, and that thick atmospheres can support emission consistent with a blackbody planet in these filters. These results make it difficult to unambiguously detect or rule out atmospheres using their photometric dayside emission alone. We suggest that an F1500W phase curve could instead be observed for a similar sample of planets. While phase curves are time-consuming and their instrumental systematics can be challenging, we suggest that they allow the only unambiguous detections of atmospheres by nightside thermal emission.

Reliable Detections of Atmospheres on Rocky Exoplanets with Photometric JWST Phase Curves

The Astrophysical Journal Letters American Astronomical Society 978:2 (2025) L40

Authors:

Mark Hammond, Claire Marie Guimond, Tim Lichtenberg, Harrison Nicholls, Chloe Fisher, Rafael Luque, Tobias G Meier, Jake Taylor, Quentin Changeat, Lisa Dang, Hamish CFC Hay, Oliver Herbort, Johanna Teske

Abstract:

The prevalence of atmospheres on rocky planets is one of the major questions in exoplanet astronomy, but there are currently no published unambiguous detections of atmospheres on any rocky exoplanets. The MIRI instrument on JWST can measure thermal emission from tidally locked rocky exoplanets orbiting small, cool stars. This emission is a function of their surface and atmospheric properties, potentially allowing detections of atmospheres. One way to find atmospheres is to search for lower dayside emission than would be expected for a blackbody planet. Another technique is to measure phase curves of thermal emission to search for nightside emission due to atmospheric heat redistribution. Here, we compare strategies for detecting atmospheres on rocky exoplanets. We simulate secondary eclipse and phase curve observations in the MIRI F1500W and F1280W filters for a range of surfaces (providing our open-access albedo data) and atmospheres on 30 exoplanets selected for their F1500W signal-to-noise ratio. We show that secondary eclipse observations are more degenerate between surfaces and atmospheres than suggested in previous work, and that thick atmospheres can support emission consistent with a blackbody planet in these filters. These results make it difficult to unambiguously detect or rule out atmospheres using their photometric dayside emission alone. We suggest that an F1500W phase curve could instead be observed for a similar sample of planets. While phase curves are time-consuming and their instrumental systematics can be challenging, we suggest that they allow the only unambiguous detections of atmospheres by nightside thermal emission.

Irradiated Atmospheres. I. Heating by Vertical-mixing-induced Energy Transport

The Astrophysical Journal American Astronomical Society 978:1 (2025) 4

Authors:

Wei Zhong, Zhen-Tai Zhang, Hui-Sheng Zhong, Bo Ma, Xianyu Tan, Cong Yu

Barotropic Instability

Elsevier (2025)

Authors:

Peter Read, Timothy Dowling

Abstract:

Barotropic instability represents a class of instabilities, usually of parallel shear flows, for which gravity and buoyancy play a negligible role, at least in their energetics. It is not restricted to purely barotropic fluids (for which ρ = ρ(p), where ρ is density and p is pressure) but can also apply to flows which are stratified and exhibit vertical shear, often leading to instabilities with mixed barotropic and baroclinic characteristics. The primary attribute of barotropic instability is usually taken to be the dominance of energy exchanges in which the kinetic energy of a perturbation grows principally at the expense of the kinetic energy of the basic state. Here we present an introduction to the basic mechanisms involved and the factors that determine the necessary and/or sufficient conditions for instability. Several examples are presented and the occurrence and subsequent nonlinear evolution of the instability is illustrated with reference to both laboratory experiments and observations in the atmospheres and oceans of the Earth and other planets in the Solar System.

Chapter 19 Oscillations in terrestrial planetary atmospheres

Chapter in Atmospheric Oscillations, Elsevier (2025) 399-441

Authors:

Joseph Michael Battalio, Maureen J Cohen, Peter L Read, Juan M Lora, Timothy H McConnochie, Kevin McGouldrick