Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures.

Science (New York, N.Y.) 369:6509 (2020) 1338-1343

Authors:

Thomas Lecocq, Stephen P Hicks, Koen Van Noten, Kasper van Wijk, Paula Koelemeijer, Raphael SM De Plaen, Frédérick Massin, Gregor Hillers, Robert E Anthony, Maria-Theresia Apoloner, Mario Arroyo-Solórzano, Jelle D Assink, Pinar Büyükakpınar, Andrea Cannata, Flavio Cannavo, Sebastian Carrasco, Corentin Caudron, Esteban J Chaves, David G Cornwell, David Craig, Olivier FC den Ouden, Jordi Diaz, Stefanie Donner, Christos P Evangelidis, Läslo Evers, Benoit Fauville, Gonzalo A Fernandez, Dimitrios Giannopoulos, Steven J Gibbons, Társilo Girona, Bogdan Grecu, Marc Grunberg, György Hetényi, Anna Horleston, Adolfo Inza, Jessica CE Irving, Mohammadreza Jamalreyhani, Alan Kafka, Mathijs R Koymans, Celeste R Labedz, Eric Larose, Nathaniel J Lindsey, Mika McKinnon, Tobias Megies, Meghan S Miller, William Minarik, Louis Moresi, Víctor H Márquez-Ramírez, Martin Möllhoff, Ian M Nesbitt, Shankho Niyogi, Javier Ojeda, Adrien Oth, Simon Proud, Jay Pulli, Lise Retailleau, Annukka E Rintamäki, Claudio Satriano, Martha K Savage, Shahar Shani-Kadmiel, Reinoud Sleeman, Efthimios Sokos, Klaus Stammler, Alexander E Stott, Shiba Subedi, Mathilde B Sørensen, Taka'aki Taira, Mar Tapia, Fatih Turhan, Ben van der Pluijm, Mark Vanstone, Jerome Vergne, Tommi AT Vuorinen, Tristram Warren, Joachim Wassermann, Han Xiao

Abstract:

Human activity causes vibrations that propagate into the ground as high-frequency seismic waves. Measures to mitigate the coronavirus disease 2019 (COVID-19) pandemic caused widespread changes in human activity, leading to a months-long reduction in seismic noise of up to 50%. The 2020 seismic noise quiet period is the longest and most prominent global anthropogenic seismic noise reduction on record. Although the reduction is strongest at surface seismometers in populated areas, this seismic quiescence extends for many kilometers radially and hundreds of meters in depth. This quiet period provides an opportunity to detect subtle signals from subsurface seismic sources that would have been concealed in noisier times and to benchmark sources of anthropogenic noise. A strong correlation between seismic noise and independent measurements of human mobility suggests that seismology provides an absolute, real-time estimate of human activities.

Prospects for Characterizing the Haziest Sub-Neptune Exoplanets with High Resolution Spectroscopy

(2020)

Authors:

Callie E Hood, Jonathan J Fortney, Michael R Line, Emily C Martin, Caroline V Morley, Jayne L Birkby, Zafar Rustamkulov, Roxana E Lupu, Richard S Freedman

First detection of ozone in the mid-infrared at Mars: implications for methane detection

Astronomy & Astrophysics EDP Sciences 639 (2020) A141

Authors:

Ks Olsen, F Lefèvre, F Montmessin, A Trokhimovskiy, L Baggio, A Fedorova​, J Alday​, A Lomakin​, Da Belyaev, A Patrakeev, A Shakun​, O Korablev

Abstract:


Aims: The ExoMars Trace Gas Orbiter (TGO) was sent to Mars in March 2016 to search for trace gases diagnostic of active geological or biogenic processes.

Methods: We report the first observation of the spectral features of Martian ozone (O3) in the mid-infrared range using the Atmospheric Chemistry Suite (ACS) Mid-InfaRed (MIR) channel, a cross-dispersion spectrometer operating in solar occultation mode with the finest spectral resolution of any remote sensing mission to Mars.

Results: Observations of ozone were made at high northern latitudes (> 65◦N) prior to the onset of the 2018 global dust storm (Ls = 163–193◦). During this fast transition phase between summer and winter ozone distribution, the O3 volume mixing ratio observed is 100–200 ppbv near 20 km. These amounts are consistent with past observations made at the edge of the southern polar vortex in the ultraviolet range. The observed spectral signature of ozone at 3000–3060 cm−1 directly overlaps with the spectral range of the methane (CH4) ν3 vibration-rotation band, and it, along with a newly discovered CO2 band in the same region, may interfere with measurements of methane abundance.

First observation of the magnetic dipole CO2 main isotopologue absorption band at 3.3 µm in the atmosphere of Mars by the ExoMars Trace Gas Orbiter ACS instrument

Astronomy & Astrophysics EDP Sciences (2020)

Authors:

A Trokhimovskiy, V Perevalov, O Korablev, A Fedorova, Ks Olsen, Jl Bertaux, A Patrakeev, A Shakun, F Montmessin, F Lefèvre

Mineral dust increases the habitability of terrestrial planets but confounds biomarker detection.

Nature communications 11:1 (2020) 2731

Authors:

Ian A Boutle, Manoj Joshi, F Hugo Lambert, Nathan J Mayne, Duncan Lyster, James Manners, Robert Ridgway, Krisztian Kohary

Abstract:

Identification of habitable planets beyond our solar system is a key goal of current and future space missions. Yet habitability depends not only on the stellar irradiance, but equally on constituent parts of the planetary atmosphere. Here we show, for the first time, that radiatively active mineral dust will have a significant impact on the habitability of Earth-like exoplanets. On tidally-locked planets, dust cools the day-side and warms the night-side, significantly widening the habitable zone. Independent of orbital configuration, we suggest that airborne dust can postpone planetary water loss at the inner edge of the habitable zone, through a feedback involving decreasing ocean coverage and increased dust loading. The inclusion of dust significantly obscures key biomarker gases (e.g. ozone, methane) in simulated transmission spectra, implying an important influence on the interpretation of observations. We demonstrate that future observational and theoretical studies of terrestrial exoplanets must consider the effect of dust.