Long-duration Venus lander for seismic and atmospheric science

Planetary and Space Science Elsevier 190 (2020) 104961

Authors:

Tibor Kremic, Richard Ghail, Martha Gilmore, Gary Hunter, Walter Kiefer, Sanjay Limaye, Michael Pauken, Carol Tolbert, Colin Wilson

Abstract:

An exciting and novel science mission concept called Seismic and Atmospheric Exploration of Venus (SAEVe) has been developed which uses high-temperature electronics to enable a three-order magnitude increase in expected surface life (120 Earth days) over what has been achieved to date. This enables study of long-term, variable phenomena such as the seismicity of Venus and near surface weather, near surface energy balance, and atmospheric chemical composition. SAEVe also serves as a critical pathfinder for more sophisticated landers in the future. For example, first order seismic measurements by SAEVe will allow future missions to deliver better seismometers and systems to support the yet unknown frequency and magnitude of Venus events. SAEVe is focused on science that can be realized with low data volume instruments and will most benefit from temporal operations. The entire mission architecture and operations maximize science while minimizing energy usage and physical size and mass. The entire SAEVe system including its protective entry system is estimated to be around 45 ​kg and approximately 0.6 ​m diameter. These features allow SAEVe to be relatively cost effective and be easily integrated onto a Venus orbiter mission. The technologies needed to implement SAEVe are currently in development by several funded activities. Component and system level work is ongoing under NASA’s Long Lived Insitu Solar System Explorer (LLISSE) project and the HOTTech program. . LLISSE, is a NASA project to develop a small Venus lander that will operate on the surface of Venus for 60 days and measure variations in meteorology, radiance, and atmospheric chemistry. LLISSE is developing a full-function engineering model of a Venus lander that contains essentially all the core capabilities of SAEVe thus greatly reducing the technology risk to SAEVe. The SAEVe long duration Venus lander promises exciting new science and is an ideal complimentary element to many future Venus orbiter missions being proposed or planned today.

Molecular cross-sections for high-resolution spectroscopy of super-Earths, warm Neptunes, and hot Jupiters

Monthly Notices of the Royal Astronomical Society Oxford University Press 495:1 (2020) 224-237

Authors:

Siddharth Gandhi, Matteo Brogi, Sergei N Yurchenko, Jonathan Tennyson, Phillip A Coles, Rebecca K Webb, Jayne L Birkby, Gloria Guilluy, George A Hawker, Nikku Madhusudhan, Aldo S Bonomo, Alessandro Sozzetti

Abstract:

High-resolution spectroscopy (HRS) has been used to detect a number of species in the atmospheres of hot Jupiters. Key to such detections is accurately and precisely modelled spectra for cross-correlation against the R ≳ 20 000 observations. There is a need for the latest generation of opacities which form the basis for high signal-to-noise detections using such spectra. In this study we present and make publicly available cross-sections for six molecular species, H2O, CO, HCN, CH4, NH3, and CO2 using the latest line lists most suitable for low- and high-resolution spectroscopy. We focus on the infrared (0.95–5 μm) and between 500 and 1500 K where these species have strong spectral signatures. We generate these cross-sections on a grid of pressures and temperatures typical for the photospheres of super-Earth, warm Neptunes, and hot Jupiters using the latest H2 and He pressure broadening. We highlight the most prominent infrared spectral features by modelling three representative exoplanets, GJ 1214 b, GJ 3470 b, and HD 189733 b, which encompass a wide range in temperature, mass, and radii. In addition, we verify the line lists for H2O, CO, and HCN with previous high-resolution observations of hot Jupiters. However, we are unable to detect CH4 with our new cross-sections from HRS observations of HD 102195 b. These high-accuracy opacities are critical for atmospheric detections with HRS and will be continually updated as new data become available.

Molecular Cross Sections for High Resolution Spectroscopy of Super Earths, Warm Neptunes and Hot Jupiters

(2020)

Authors:

Siddharth Gandhi, Matteo Brogi, Sergei N Yurchenko, Jonathan Tennyson, Phillip A Coles, Rebecca K Webb, Jayne L Birkby, Gloria Guilluy, George A Hawker, Nikku Madhusudhan, Aldo S Bonomo, Alessandro Sozzetti

Initial results from the New Horizons exploration of 2014 MU69, a small Kuiper Belt Object

(2020)

Authors:

SA Stern, HA Weaver, JR Spencer, CB Olkin, GR Gladstone, WM Grundy, JM Moore, DP Cruikshank, HA Elliott, WB McKinnon, J Wm Parker, AJ Verbiscer, LA Young, DA Aguilar, JM Albers, T Andert, JP Andrews, F Bagenal, ME Banks, BA Bauer, JA Bauman, KE Bechtold, CB Beddingfield, N Behrooz, KB Beisser, SD Benecchi, E Bernardoni, RA Beyer, S Bhaskaran, CJ Bierson, RP Binzel, EM Birath, MK Bird, DR Boone, AF Bowman, VJ Bray, DT Britt, LE Brown, MR Buckley, MW Buie, BJ Buratti, LM Burke, SS Bushman, B Carcich, AL Chaikin, CL Chavez, AF Cheng, EJ Colwell, SJ Conard, MP Conner, CA Conrad, JC Cook, SB Cooper, OS Custodio, CM Dalle Ore, CC Deboy, P Dharmavaram, RD Dhingra, GF Dunn, AM Earle, AF Egan, J Eisig, MR El-Maarry, C Engelbrecht, BL Enke, CJ Ercol, ED Fattig, CL Ferrell, TJ Finley, J Firer, J Fischetti, WM Folkner, MN Fosbury, GH Fountain, JM Freeze, L Gabasova, LS Glaze, JL Green, GA Griffith, Y Guo, M Hahn, DW Hals, DP Hamilton, SA Hamilton, JJ Hanley, A Harch, KA Harmon, HM Hart, J Hayes, CB Hersman, ME Hill, TA Hill, JD Hofgartner, ME Holdridge, M Horányi, A Hosadurga, AD Howard, CJA Howett, SE Jaskulek, DE Jennings, JR Jensen, MR Jones, HK Kang, DJ Katz, DE Kaufmann, JJ Kavelaars, JT Keane, GP Keleher, M Kinczyk, MC Kochte, P Kollmann, SM Krimigis, GL Kruizinga, DY Kusnierkiewicz, MS Lahr, TR Lauer, GB Lawrence, JE Lee, EJ Lessac-Chenen, IR Linscott, CM Lisse, AW Lunsford, DM Mages, VA Mallder, NP Martin, BH May, DJ McComas, RL McNutt, Jr DS Mehoke, TS Mehoke, DS Nelson, HD Nguyen, JI Núñez, AC Ocampo, WM Owen, GK Oxton, AH Parker, M Pätzold, JY Pelgrift, FJ Pelletier, JP Pineau, MR Piquette, SB Porter, S Protopapa, E Quirico, JA Redfern, AL Regiec, HJ Reitsema, DC Reuter, DC Richardson, JE Riedel, MA Ritterbush, SJ Robbins, DJ Rodgers, GD Rogers, DM Rose, PE Rosendall, KD Runyon, MG Ryschkewitsch, MM Saina, MJ Salinas, PM Schenk, JR Scherrer, WR Schlei, B Schmitt, DJ Schultz, DC Schurr, F Scipioni, RL Sepan, RG Shelton, MR Showalter, M Simon, KN Singer, EW Stahlheber, DR Stanbridge, JA Stansberry, AJ Steffl, DF Strobel, MM Stothoff, T Stryk, JR Stuart, ME Summers, MB Tapley, A Taylor, HW Taylor, RM Tedford, HB Throop, LS Turner, OM Umurhan, J Van Eck, D Velez, MH Versteeg, MA Vincent, RW Webbert, SE Weidner, GE Weigle, JR Wendel, OL White, KE Whittenburg, BG Williams, KE Williams, SP Williams, HL Winters, AM Zangari, TH Zurbuchen

The Geology and Geophysics of Kuiper Belt Object (486958) Arrokoth

(2020)

Authors:

JR Spencer, SA Stern, JM Moore, HA Weaver, KN Singer, CB Olkin, AJ Verbiscer, WB McKinnon, J Wm Parker, RA Beyer, JT Keane, TR Lauer, SB Porter, OL White, BJ Buratti, MR El-Maarry, CM Lisse, AH Parker, HB Throop, SJ Robbins, OM Umurhan, RP Binzel, DT Britt, MW Buie, AF Cheng, DP Cruikshank, HA Elliott, GR Gladstone, WM Grundy, ME Hill, M Horanyi, DE Jennings, JJ Kavelaars, IR Linscott, DJ McComas, RL McNutt, S Protopapa, DC Reuter, PM Schenk, MR Showalter, LA Young, AM Zangari, AY Abedin, CB Beddingfield, SD Benecchi, E Bernardoni, CJ Bierson, D Borncamp, VJ Bray, AL Chaikin, RD Dhingra, C Fuentes, T Fuse, PL Gay, SDJ Gwyn, DP Hamilton, JD Hofgartner, MJ Holman, AD Howard, CJA Howett, H Karoji, DE Kaufmann, M Kinczyk, BH May, M Mountain, M Pätzold, JM Petit, MR Piquette, IN Reid, HJ Reitsema, KD Runyon, SS Sheppard, JA Stansberry, T Stryk, P Tanga, DJ Tholen, DE Trilling, LH Wasserman