Predicting El Niño in 2014 and 2015
Scientific Reports Springer Nature 8 (2018) 10733
Abstract:
Early in 2014 several forecast systems were suggesting a strong 1997/98-like El Niño event for the following northern hemisphere winter 2014/15. However the eventual outcome was a modest warming. In contrast, winter 2015/16 saw one of the strongest El Niño events on record. Here we assess the ability of two operational seasonal prediction systems to forecast these events, using the forecast ensembles to try to understand the reasons underlying the very different development and outcomes for these two years. We test three hypotheses. First we find that the continuation of neutral ENSO conditions in 2014 is associated with the maintenance of the observed cold southeast Pacific sea surface temperature anomaly; secondly that, in our forecasts at least, warm west equatorial Pacific sea surface temperature anomalies do not appear to hinder El Niño development; and finally that stronger westerly wind burst activity in 2015 compared to 2014 is a key difference between the two years. Interestingly, in these years at least, this interannual variability in wind burst activity is predictable. ECMWF System 4 tends to produce more westerly wind bursts than Met Office GloSea5 and this likely contributes to the larger SST anomalies predicted in this model in both years.An intercomparison of skill and over/underconfidence of the wintertime North Atlantic Oscillation in multi-model seasonal forecasts
Geophysical Research Letters American Geophysical Union 45:15 (2018) 7808-7817
Abstract:
Recent studies of individual seasonal forecast systems have shown that the wintertime North Atlantic Oscillation (NAO) can be skilfully forecast. However, it has also been suggested that these skilful forecasts tend to be underconfident, meaning that there is too high a proportion of unpredictable noise in the forecasts. We assess the skill and over/underconfidence of the seasonal forecast systems contributing to the EUROSIP multi‐model ensemble system. Five of the seven systems studied have significant skill for forecasting the wintertime NAO at 2–4 month lead‐times. Four of these skilful systems are underconfident for forecasting the NAO. A multi‐model ensemble (ensemble size 126 members) is both skilful and clearly underconfident. Underconfidence becomes more pronounced as the ensemble size increases. Certain years in the hindcast period are well forecast by all or most models. This implies that common teleconnections and drivers of the NAO are being captured by the EUROSIP seasonal forecasts.Current level and rate of warming determine emissions budgets under ambitious mitigation
Nature Geoscience Macmillan Publishers Ltd. 11 (2018) 574-579
Abstract:
Some of the differences between recent estimates of the remaining budget of carbon dioxide (CO2) emissions consistent with limiting warming to 1.5 °C arise from different estimates of the level of warming to date relative to pre-industrial conditions, but not all. Here we show that, for simple geometrical reasons, the combination of both the level and rate of human-induced warming provides a remarkably accurate prediction of remaining emission budgets to peak warming across a broad range of scenarios, if budgets are expressed in terms of CO2-forcing-equivalent emissions. These in turn predict CO2 emissions budgets if (but only if) the fractional contribution of non-CO2 drivers to warming remains approximately unchanged, as it does in some ambitious mitigation scenarios, indicating a best-estimate remaining budget for 1.5 °C of about 22 years’ current emissions from mid-2017, with a ‘likely’ (1 standard error) range of 13–32 years. This provides a simple, transparent and model-independent metric of progress towards an ambitious temperature stabilization goal that could be used to inform the Paris Agreement stocktake process. It is less applicable to less ambitious goals. Alternative definitions of current warming and scenarios for non-CO2 drivers give lower 1.5 °C budgets. Lower budgets based on the MAGICC simple modelling system widely used in integrated assessment studies reflect its relatively high simulated current warming rates.FAIR v1.3: a simple emissions-based impulse response and carbon cycle model
Geoscientific Model Development Copernicus Publications 11:6 (2018) 2273-2297
The impact of tropical precipitation on summertime Euro-Atlantic circulation via a circumglobal wave-train
Journal of Climate American Meteorological Society 31:16 (2018) 6481-6504