Simulating weather regimes: impact of model resolution and stochastic parameterization

Climate Dynamics 44:7-8 (2015) 2177-2193

Authors:

A Dawson, TN Palmer

Abstract:

The simulation of quasi-persistent regime structures in an atmospheric model with horizontal resolution typical of the Intergovernmental Panel on Climate Change fifth assessment report simulations, is shown to be unrealistic. A higher resolution configuration of the same model, with horizontal resolution typical of that used in operational numerical weather prediction, is able to simulate these regime structures realistically. The spatial patterns of the simulated regimes are remarkably accurate at high resolution. A model configuration at intermediate resolution shows a marked improvement over the low-resolution configuration, particularly in terms of the temporal characteristics of the regimes, but does not produce a simulation as accurate as the very-high-resolution configuration. It is demonstrated that the simulation of regimes can be significantly improved, even at low resolution, by the introduction of a stochastic physics scheme. At low resolution the stochastic physics scheme drastically improves both the spatial and temporal aspects of the regimes simulation. These results highlight the importance of small-scale processes on large-scale climate variability, and indicate that although simulating variability at small scales is a necessity, it may not be necessary to represent the small-scales accurately, or even explicitly, in order to improve the simulation of large-scale climate. It is argued that these results could have important implications for improving both global climate simulations, and the ability of high-resolution limited-area models, forced by low-resolution global models, to reliably simulate regional climate change signals.

Optimisation of an idealised ocean model, stochastic parameterisation of sub-grid eddies

Ocean Modelling Elsevier 88 (2015) 38-53

Authors:

Fenwick C Cooper, Laure Zanna

Impact of hindcast length on estimates of seasonal climate predictability

Geophysical Research Letters 42:5 (2015) 1554-1559

Authors:

W Shi, N Schaller, D Macleod, TN Palmer, A Weisheimer

Abstract:

It has recently been argued that single-model seasonal forecast ensembles are overdispersive, implying that the real world is more predictable than indicated by estimates of so-called perfect model predictability, particularly over the North Atlantic. However, such estimates are based on relatively short forecast data sets comprising just 20 years of seasonal predictions. Here we study longer 40 year seasonal forecast data sets from multimodel seasonal forecast ensemble projects and show that sampling uncertainty due to the length of the hindcast periods is large. The skill of forecasting the North Atlantic Oscillation during winter varies within the 40 year data sets with high levels of skill found for some subperiods. It is demonstrated that while 20 year estimates of seasonal reliability can show evidence of overdispersive behavior, the 40 year estimates are more stable and show no evidence of overdispersion. Instead, the predominant feature on these longer time scales is underdispersion, particularly in the tropics.

Impact of hindcast length on estimates of seasonal climate predictability.

Geophysical research letters 42:5 (2015) 1554-1559

Authors:

W Shi, N Schaller, D MacLeod, TN Palmer, A Weisheimer

Abstract:

It has recently been argued that single-model seasonal forecast ensembles are overdispersive, implying that the real world is more predictable than indicated by estimates of so-called perfect model predictability, particularly over the North Atlantic. However, such estimates are based on relatively short forecast data sets comprising just 20 years of seasonal predictions. Here we study longer 40 year seasonal forecast data sets from multimodel seasonal forecast ensemble projects and show that sampling uncertainty due to the length of the hindcast periods is large. The skill of forecasting the North Atlantic Oscillation during winter varies within the 40 year data sets with high levels of skill found for some subperiods. It is demonstrated that while 20 year estimates of seasonal reliability can show evidence of overdispersive behavior, the 40 year estimates are more stable and show no evidence of overdispersion. Instead, the predominant feature on these longer time scales is underdispersion, particularly in the tropics.

Key points

Predictions can appear overdispersive due to hindcast length sampling errorLonger hindcasts are more robust and underdispersive, especially in the tropicsTwenty hindcasts are an inadequate sample size to assess seasonal forecast skill.

Bell's Conspiracy, Schrödinger's Black Cat and Global Invariant Sets

ArXiv 1502.06972 (2015)