The Hourglass Simulation: A Catalog for the Roman High-latitude Time-domain Core Community Survey
The Astrophysical Journal American Astronomical Society 988:1 (2025) 65
Abstract:
We present a simulation of the time-domain catalog for the Nancy Grace Roman Space Telescope’s High-Latitude Time-Domain Core Community Survey. This simulation, called the Hourglass simulation, uses the most up-to-date spectral energy distribution models and rate measurements for 10 extragalactic time-domain sources. We simulate these models through the design reference Roman Space Telescope survey: four filters per tier, a five-day cadence, over 2 yr, a wide tier of 19 deg2, and a deep tier of 4.2 deg2, with ∼20% of those areas also covered with prism observations. We find that a science-independent Roman time-domain catalog, assuming a signal-to-noise ratio at a max of >5, would have approximately 21,000 Type Ia supernovae, 40,000 core-collapse supernovae, around 70 superluminous supernovae, ∼35 tidal disruption events, three kilonovae, and possibly pair-instability supernovae. In total, Hourglass has over 64,000 transient objects, 11,000,000 photometric observations, and 500,000 spectra. Additionally, Hourglass is a useful data set to train machine learning classification algorithms. We show that SCONE is able to photometrically classify Type Ia supernovae with high precision (∼95%) to a z > 2. Finally, we present the first realistic simulations of non-Type Ia supernovae spectral time series data from Roman’s prism.Angular-momentum pairs in spherical systems: applications to the Galactic centre
(2025)
Comparing the DES-SN5YR and Pantheon+ SN cosmology analyses: investigation based on ‘evolving dark energy or supernovae systematics’?
Monthly Notices of the Royal Astronomical Society Oxford University Press 541:3 (2025) 2585-2593
Abstract:
Recent cosmological analyses measuring distances of type Ia supernovae (SNe Ia) and baryon acoustic oscillations (BAO) have all given similar hints at time-evolving dark energy. To examine whether underestimated SN Ia systematics might be driving these results, Efstathiou (2025) compared overlapping SN events between Pantheon+ and DES-SN5YR (20 per cent SNe are in common), and reported evidence for an 0.04 mag offset between the low- and high-redshift distance measurements of this subsample of events. If this offset is arbitrarily subtracted from the entire DES-SN5YR sample, the preference for evolving dark energy is reduced. In this paper, we show that this offset is mostly due to different corrections for Malmquist bias between the two samples; therefore, an object-to-object comparison can be misleading. Malmquist bias corrections differ between the two analyses for several reasons. First, DES-SN5YR used an improved model of SN Ia luminosity scatter compared to Pantheon+ but the associated scatter-model uncertainties are included in the error budget. Secondly, improvements in host mass estimates in DES-SN5YR also affected SN standardized magnitudes and their bias corrections. Thirdly, and most importantly, the selection functions of the two compilations are significantly different, hence the inferred Malmquist bias corrections. Even if the original scatter model and host properties from Pantheon+ are used instead, the evidence for evolving dark energy from CMB, DESI BAO Year 1 and DES-SN5YR is only reduced from 3.9 to 3.3, consistent with the error budget. Finally, in this investigation, we identify an underestimated systematic uncertainty related to host galaxy property uncertainties, which could increase the final DES-SN5YR error budget by 3 per cent. In conclusion, we confirm the validity of the published DES-SN5YR results.Monte Carlo radiation hydrodynamic simulations of line-driven disc winds: relaxing the isothermal approximation
Monthly Notices of the Royal Astronomical Society Oxford University Press 541:3 (2025) 2393-2404
Abstract:
Disc winds play a crucial role in many accreting astrophysical systems across all scales. In accreting white dwarfs (AWDs) and active galactic nuclei (AGNs), radiation pressure on spectral lines is a promising wind-driving mechanism. However, the efficiency of line driving is extremely sensitive to the ionization state of the flow, making it difficult to construct a reliable physical picture of these winds. Recently, we presented the first radiation-hydrodynamics simulations for AWDs that incorporated detailed, multidimensional ionization calculations via fully frequency-dependent radiative transfer, using the sirocco code coupled to pluto. These simulations produced much weaker line-driven winds ( for our adopted parameters) than earlier studies using more approximate treatments of ionization and radiative transfer (which yielded ). One remaining limitation of our work was the assumption of an isothermal outflow. Here, we relax this by adopting an ideal gas equation of state and explicitly solving for the multidimensional temperature structure of the flow. In the AWD setting, accounting for the thermal state of the wind does not change the overall conclusions drawn from the isothermal approximation. Our new simulations confirm the line-driving efficiency problem: the predicted outflows are too highly ionized, meaning they neither create optimal driving conditions nor reproduce the observed ultraviolet wind signatures. Possible solutions include wind clumping on subgrid scales, a softer-than-expected spectral energy distribution or additional driving mechanisms. With the physics now built into our simulations, we are well equipped to also explore line-driven disc winds in AGN.The accretion–ejection connection in the black hole X-ray binary MAXI J1820+070
Monthly Notices of the Royal Astronomical Society Oxford University Press 541:2 (2025) 1851-1865