The connection between the fastest astrophysical jets and the spin axis of their black hole
Nature Astronomy Nature Research (2025)
Abstract:
Abstract Astrophysical jets signpost the most extreme phenomena in the Universe. Despite a century of study, connections between the physics of black holes and the processes underpinning the formation and launch of these jets remain elusive. Here we present a statistically significant sample of transient jet speeds from stellar-mass black holes and neutron stars. The fastest jets are exclusively from black holes and propagate along a fixed axis across several ejection phases. This provides strong evidence that the most relativistic jets propagate along the spin axis of the black hole that launches them. However, we find no correlation between reported spin estimates and the jet speeds, indicating that some issues remain in connecting the theories of jet formation with spin measurements. By contrast, slower jets can be launched by both black holes and neutron stars and can change in direction or precess, indicating that they are launched from the accretion flow.Getting More Out of Black Hole Superradiance: a Statistically Rigorous Approach to Ultralight Boson Constraints from Black Hole Spin Measurements
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1564
Abstract:
Abstract Black hole (BH) superradiance can provide strong constraints on the properties of ultralight bosons (ULBs). While most of the previous work has focused on the theoretical predictions, here we investigate the most suitable statistical framework to constrain ULB masses and self-interactions using BH spin measurements. We argue that a Bayesian approach based on a simple timescales analysis provides a clear statistical interpretation, deals with limitations regarding the reproducibility of existing BH analyses, incorporates the full information from BH data, and allows us to include additional nuisance parameters or to perform hierarchical modelling with BH populations in the future. We demonstrate the feasibility of our approach using mass and spin posterior samples for the X-ray binary BH M33 X-7 and, for the first time in this context, the supermassive BH IRAS 09149-6206. We explain the differences to existing ULB constraints in the literature and illustrate the effects of various assumptions about the superradiance process (equilibrium regime vs cloud collapse, higher occupation levels). As a result, our procedure yields the most statistically rigorous ULB constraints available in the literature, with important implications for the QCD axion and axion-like particles. We encourage all groups analysing BH data to publish likelihood functions or posterior samples as supplementary material to facilitate this type of analysis, and for theory developments to compress their findings to effective timescale modifications. https://github.com/sebhoof/bhsrAngle-dependent hardening of the reprocessed spectra in ULXs powered by accretion on to neutron stars
Monthly Notices of the Royal Astronomical Society Oxford University Press 543:2 (2025) 1447-1455
Abstract:
It is anticipated that mass accretion rates exceeding approximately in X-ray pulsars lead to radiation-driven outflows from supercritical accretion discs. The outflows launched from the disc influence the angular distribution of X-ray radiation, resulting in geometrical beaming. The beaming, in turn, impacts the apparent luminosity of the X-ray pulsar, detectability of pulsations, and the spectral composition of the X-ray flux. We employ a straightforward geometrical model of the outflows, perform Monte Carlo simulations, and model the spectra of radiation, reprocessed by the walls of the accretion cavity formed by the outflows. We consider the reprocessed emission only; direct pulsar emission is not included in our modelling. Our results demonstrate that the spectra of reprocessed radiation depend on the actual luminosity of the central engine, the geometry of the outflows, and the viewing angle – most notably on the latter, through changing visibility of the hotter wall regions near the disc plane. The high-energy part of the reprocessed spectrum depends strongly on viewing angle (harder at lower inclinations), while the soft flux varies comparatively little with inclination. In our model, this contrast is a prediction: variable ultraluminous X-ray sources are expected to exhibit strong high-energy angle sensitivity together with comparatively modest soft-band variation, naturally arising if precession modulates the effective inclination.A MeerKAT view of the parsec-scale jets in the black-hole X-ray binary GRS 1758-258
(2025)
Relativistic precessing jets powered by an accreting neutron star
Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press 544:1 (2025) L37-L44