Gone with the Wind: JWST-MIRI Unveils a Strong Outflow from the Quiescent Stellar-Mass Black Hole A0620-00

(2025)

Authors:

Zihao Zuo, Gabriele Cugno, Joseph Michail, Elena Gallo, David M Russell, Richard M Plotkin, Fan Zou, M Cristina Baglio, Piergiorgio Casella, Fraser J Cowie, Rob Fender, Poshak Gandhi, Sera Markoff, Federico Vincentelli, Fraser Lewis, Jon M Miller, James CA Miller-Jones, Alexandra Veledina

Hydrodynamic simulations of black hole evolution in AGN discs II: inclination damping for partially embedded satellites

(2025)

Authors:

Henry Whitehead, Connar Rowan, Bence Kocsis

Hydrodynamic simulations of black hole evolution in AGN discs I: orbital alignment of highly inclined satellites

(2025)

Authors:

Connar Rowan, Henry Whitehead, Gaia Fabj, Philip Kirkeberg, Martin E Pessah, Bence Kocsis

Detection of X-ray emission from a bright long-period radio transient

Nature Springer Nature 642:8068 (2025) 583-586

Authors:

Ziteng Wang, Nanda Rea, Tong Bao, David L Kaplan, Emil Lenc, Zorawar Wadiasingh, Jeremy Hare, Andrew Zic, Akash Anumarlapudi, Apurba Bera, Paz Beniamini, Alexander Cooper, Tracy E Clarke, Adam T Deller, Jr Dawson, Marcin Glowacki, Natasha Hurley-Walker, Sj McSweeney, Emil J Polisensky, Wendy M Peters, George Younes, Keith W Bannister, Manisha Caleb, Kristen C Dage, Clancy W James, Mansi M Kasliwal, Viraj Karambelkar, Marcus E Lower, Kaya Mori, Stella Koch Ocker, Miguel Pérez-Torres, Hao Qiu, Kovi Rose, Ryan M Shannon, Rhianna Taub, Fayin Wang, Yuanming Wang, Zhenyin Zhao, ND Ramesh Bhat, Dougal Dobie, Laura N Driessen, Tara Murphy, Akhil Jaini, Xinping Deng, Joscha N Jahns-Schindler, YW Joshua Lee, Joshua Pritchard, John Tuthill, Nithyanandan Thyagarajan

Abstract:

Recently, a class of long-period radio transients (LPTs) has been discovered, exhibiting emission thousands of times longer than radio pulsars. These findings, enabled by advances in wide-field radio surveys, challenge existing models of rotationally powered pulsars. Proposed models include highly magnetized neutron stars, white-dwarf pulsars and white-dwarf binary systems with low-mass companions. Although some models predict X-ray emission, no LPTs have been detected in X-rays despite extensive searches Here we report the discovery of an extremely bright LPT (10–20 Jy in radio), ASKAP J1832−0911, which has coincident radio and X-ray emission, both with a 44.2-minute period. Its correlated and highly variable X-ray and radio luminosities, combined with other observational properties, are unlike any known Galactic object. The source could be an old magnetar or an ultra-magnetized white dwarf; however, both interpretations present theoretical challenges. This X-ray detection from an LPT reveals that these objects are more energetic than previously thought and establishes a class of hour-scale periodic X-ray transients with a luminosity of about 1033 erg s−1 linked to exceptionally bright coherent radio emission.

Relativistic ejecta from stellar mass black holes: insights from simulations and synthetic radio images

Monthly Notices of the Royal Astronomical Society Oxford University Press 540:1 (2025) 1084-1106

Authors:

Katie Savard, James H Matthews, Rob Fender, Ian Heywood

Abstract:

We present numerical simulations of discrete relativistic ejecta from an X-ray binary (XRB) with initial conditions directly informed by observations. XRBs have been observed to launch powerful discrete plasma ejecta during state transitions, which can propagate up to parsec distances. Understanding these ejection events unveils new understanding of jet-launching, jet power, and jet–interstellar medium (ISM) interaction among other implications. Multifrequency quasi-simultaneous radio observations of ejecta from the black hole XRB MAXI J1820+070 produced both size and calorimetry constraints, which we use as initial conditions of a relativistic hydrodynamic simulation. We qualitatively reproduce the observed deceleration of the ejecta in a homogeneous ISM. Our simulations demonstrate that the ejecta must be denser than the ISM, the ISM be significantly low density, and the launch be extremely powerful, in order to propagate to the observed distances. The blob propagates and clears out a high-pressure low-density cavity in its wake, providing an explanation for this pre-existing low-density environment, as well as ‘bubble-like’ environments in the vicinity of XRBs inferred from other studies. As the blob decelerates, we observe the onset of instabilities and a long-lived reverse shock – these mechanisms convert kinetic to internal energy in the blob, responsible for in situ particle acceleration. We transform the outputs of our simulation into pseudo-radio images, incorporating the coverage of the MeerKAT and e-MERLIN telescopes from the original observations with real-sky background. Through this, we maximize the interpretability of the results and provide direct comparison to current data, as well as provide prediction capabilities.