Thermally activated delayed fluorophore and plasmonic structures integrated with perovskites for X-ray scintillation and imaging

Matter Cell Press 7:10 (2024) 3256-3289

Authors:

Atanu Jana, Sangeun Cho, Kandasamy Sasikumar, Heongkyu Ju, Hyunsik Im, Robert A Taylor

Abstract:

The development of inexpensive and easily processable X-ray-sensitive materials is of great importance because a number of commercial scintillators, such as LaBr3(Ce), Gd3Al3Ga2O12(Ce), Cs2HfCl6, NaI:Tl, CsI:Tl, and LiI:Eu, are fabricated using highly toxic or rare-earth elements via high-temperature synthesis. This has spurred research into radioluminescence-enhancing mechanisms and solution-processable scintillating materials made from earth-abundant elements that have excellent optoelectronic properties, including high quantum yields and a low afterglow effect. In recent years, a range of metal halide perovskite (MHP) integrated with thermally activated delayed fluorescence (TADF) materials have been developed, exhibiting excellent scintillation properties and a high spatial resolution. Meanwhile, plasmonic technologies are reported to exploit light-energy confinement capabilities beyond the diffraction limit that produces local-field enhancement. This enhancement has subsequently improved the performance of small-sized optoelectronic devices such as solar cells and diagnostic optical sensors. This perspective summarizes the current development of innovative MHP, TADF, and plasmonic materials for use in scintillators and their integrated moieties while also identifying the relevant challenges. Following a thorough evaluation of the efforts made to improve the X-ray scintillation efficiency of these materials, we propose an outlook for future research in order to further enhance their scintillation properties and spatial resolution.

Inhibiting the Appearance of Green Emission in Mixed Lead Halide Perovskite Nanocrystals for Pure Red Emission.

Nano letters American Chemical Society (ACS) 24:39 (2024) 12045-12053

Authors:

Mutibah Alanazi, Ashley R Marshall, Yincheng Liu, Jinwoo Kim, Shaoni Kar, Henry J Snaith, Robert A Taylor, Tristan Farrow

Abstract:

Mixed halide perovskites exhibit promising optoelectronic properties for next-generation light-emitting diodes due to their tunable emission wavelength that covers the entire visible light spectrum. However, these materials suffer from severe phase segregation under continuous illumination, making long-term stability for pure red emission a significant challenge. In this study, we present a comprehensive analysis of the role of halide oxidation in unbalanced ion migration (I/Br) within CsPbI<sub>2</sub>Br nanocrystals and thin films. We also introduce a new approach using cyclic olefin copolymer (COC) to encapsulate CsPbI<sub>2</sub>Br perovskite nanocrystals (PNCs), effectively suppressing ion migration by increasing the corresponding activation energy. Compared with that of unencapsulated samples, we observe a substantial reduction in phase separation under intense illumination in PNCs with a COC coating. Our findings show that COC enhances phase stability by passivating uncoordinated surface defects (Pb<sup>2+</sup> and I<sup>-</sup>), increasing the formation energy of halide vacancies, improving the charge carrier lifetime, and reducing the nonradiative recombination density.

Boosting biomolecular switch efficiency with quantum coherence

Physical Review A American Physical Society (APS) 110:1 (2024) 012411

Authors:

Mattheus Burkhard, Onur Pusuluk, Tristan Farrow

Stabilization of halide perovskites with silicon compounds for optoelectronic, catalytic, and bioimaging applications

InfoMat Wiley Open Access (2024) e12559

Authors:

Atanu Jana, Sangeun Cho, Abhishek Meena, Abu Talha Aqueel Ahmed, Vijaya Gopalan Sree, Youngsin Park, Hyungsang Kim, Hyunsik Im, Robert A Taylor

Abstract:

Silicon belongs to group 14 elements along with carbon, germanium, tin, and lead in the periodic table. Similar to carbon, silicon is capable of forming a wide range of stable compounds, including silicon hydrides, organosilicons, silicic acids, silicon oxides, and silicone polymers. These materials have been used extensively in optoelectronic devices, sensing, catalysis, and biomedical applications. In recent years, silicon compounds have also been shown to be suitable for stabilizing delicate halide perovskite structures. These composite materials are now receiving a lot of interest for their potential use in various real‐world applications. Despite exhibiting outstanding performance in various optoelectronic devices, halide perovskites are susceptible to breakdown in the presence of moisture, oxygen, heat, and UV light. Silicon compounds are thought to be excellent materials for improving both halide perovskite stability and the performance of perovskite‐based optoelectronic devices. In this work, a wide range of silicon compounds that have been used in halide perovskite research and their applications in various fields are discussed. The interfacial stability, structure–property correlations, and various application aspects of perovskite and silicon compounds are also analyzed at the molecular level. This study also explores the developments, difficulties, and potential future directions associated with the synthesis and application of perovskite‐silicon compounds. image

Electrolyte-assisted polarization leading to enhanced charge separation and solar-to-hydrogen conversion efficiency of seawater splitting

Nature Catalysis Springer Nature 7:1 (2024) 77-88

Authors:

Yiyang Li, Hui Zhou, Songhua Cai, Dharmalingam Prabhakaran, Wentian Niu, Alexander Large, Georg Held, Robert A Taylor, Xin-Ping Wu, Shik Chi Edman Tsang

Abstract:

<jats:title>Abstract</jats:title><jats:p>Photocatalytic splitting of seawater for hydrogen evolution has attracted a great deal of attention in recent years. However, the poor energy conversion efficiency and stability of photocatalysts in a salty environment have greatly hindered further applications of this technology. Moreover, the effects of electrolytes in seawater remain controversial. Here we present electrolyte-assisted charge polarization over an N-doped TiO<jats:sub>2</jats:sub> photocatalyst, which demonstrates the stoichiometric evolution of H<jats:sub>2</jats:sub> and O<jats:sub>2</jats:sub> from the thermo-assisted photocatalytic splitting of seawater. Our extensive characterizations and computational studies show that ionic species in seawater can selectively adsorb on photo-polarized facets of the opposite charge, which can prolong the charge-carrier lifetime by a factor of five, leading to an overall energy conversion efficiency of 15.9 ± 0.4% at 270 °C. Using a light-concentrated furnace, a steady hydrogen evolution rate of 40 mmol g<jats:sup>−1</jats:sup> h<jats:sup>−1</jats:sup> is demonstrated, which is of the same order of magnitude as laboratory-scale electrolysers.</jats:p>