Nanoscale MoS 2 -in-Nanoporous Au Hybrid Structure for Enhancing Electrochemical Sensing
Sensors MDPI 25:23 (2025) 7137
Abstract:
We report the fabrication of nanoscale MoS2 (nMoS2) via laser ablation in liquid and its application in electrochemical sensing. The laser ablation process fragments microscale MoS2 sheets into ~5 nm dots with stable aqueous dispersibility. Electrochemical analysis reveals that nMoS2 possesses multiple reversible redox states, enabling it to participate in redox cycling reactions that can amplify electrochemical signals. When the nMoS2 is embedded in an electrochemically inert matrix, a chitosan layer, and subsequently incorporated within a nanostructured Au electrode, the nMoS2-participating redox cycling reactions are further enhanced by the nanoconfinement effect, leading to synergistic signal amplification. As a model system, this hybrid nMoS2-in-nanoporous Au electrode demonstrates a 9-fold increase in sensitivity for detecting pyocyanin, a biomarker of Pseudomonas aeruginosa infection, compared with a flat electrode without nMoS2 loading. This study not only elucidates the redox characteristics of laser-fabricated zero-dimensional transition metal dichalcogenides but also presents a strategy to integrate semiconducting nanomaterials with metallic nanostructures for high-performance electrochemical sensing.Humidity-resilient trace hydrogen detection using AuPd-Functionalized zinc oxide nanohybrids on surface-engineered silicon substrate
Chemical Engineering Journal Elsevier 524 (2025) 168945
Abstract:
The accelerating growth of the hydrogen (H2) economy is pivotal for achieving large-scale decarbonization of current energy resources. Ensuring safe and efficient handling of this potentially hazardous resource has led to an increasing demand for fast, selective and reliable H2 sensors. In this work, we report a nanohybrid H2 sensing platform comprising uniformly dispersed AuPd bimetallic nanoparticles (BNPs) embedded in a ZnO-based metal oxide semiconductor (MOS) matrix infiltrated within an anodized porous silicon (PSi) framework. This hybrid design (PSi-MOS#AuPd) synergistically merges the strong chemisorption affinity and rapid desorption kinetics of Pd with the enhanced catalytic activity and electronic modulation imparted by AuPd interactions. Precise control over BNPs thickness (~ 8.6 nm) ensures uniform dispersion and effectively mitigates the inherent volume expansion of Pd during hydrogenation, maintaining structural integrity and catalytic efficiency. The PSi support characterized by high porosity (~1.1 μm) and superhydrophobicity (θ w = 153.6° ± 0.2°), promotes efficient gas diffusion and enhances humidity resilience. The resulting sensor exhibits remarkable performance, including high sensitivity ~46 %@50ppm, low-operating temperature (~90 °C), rapid response time (~14 s), excellent stability over 60 days and strong selectivity against interfering gases (H2S, NH3, NO2, and CO) under varying humidity conditions (25–85 % RH). This work paves the way for the advancement of H2 sensors and highlights the potential of substrate engineering and bimetallic synergy in enhancing gas sensing technology for safety-critical applications.Numerical Aperture Dependence of Mie Modes in Low Refractive Index Particles and Enhanced Collection Using Metallic Substrates
Advanced Optical Materials Wiley 13:32 (2025) e01451
Abstract:
Advancements in utilizing low refractive index dielectric particles have implications for sensing, lasing, and strong‐coupling at nano and microscopic scales. These cavities offer benefits like ease of fabrication and biocompatibility, making them promising for a wide range of technologies by utilizing their narrow linewidth modes. However, optical modes sustained in these dispersive systems can show distinct behaviors depending on the detection configuration. This study shows the influence of numerical aperture (NA) of the objective lens on the detection of Mie modes in a dielectric microsphere under far‐field excitation and collection. It is demonstrated experimentally and numerically that Mie modes from microspheres outcouple at different angles, with variations in mode amplitudes contingent on the NA of the objective lens, thus leading to distinct linewidths while probing with different NA objectives. Furthermore, it is shown that metallic substrates can facilitate efficient detection of Mie modes by redirecting scattered modes towards low angles. This enables mode detection with low NA lenses and further preventing the inclusion of incident scattered light from higher angles which otherwise perturb the modes. The results underline the importance of careful detection strategies to fully harness dielectric particles as optical platforms for applications in particle detection and characterization.Synergistic Rh/La Codoping Enables Trap-Mediated Charge Separation in Layered Perovskite Photocatalysts
Journal of the American Chemical Society American Chemical Society 147:42 (2025) 38599-38608
Abstract:
Two-dimensional layered perovskite oxides have emerged as promising photocatalysts for solar-driven hydrogen evolution. Although doping has been widely employed to enhance photocatalytic performance, its role in modulating the electronic structure and the local chemical environment of these materials remains poorly understood. Here in this study, we investigate the codoping of Rh and La into exfoliated nanosheets of the Dion–Jacobson perovskite KCa2Nb3O10 to enhance photocatalytic hydrogen evolution reaction (HER) activity. A substantial increase in H2 evolution rate, from 12.3 to 69.0 μmol h–1, was achieved at an optimal doping level of 0.2 wt % Rh and 1.3 wt % La. Comprehensive structural and spectroscopic analyses, including synchrotron techniques and high-resolution microscopy, revealed that Rh3+ substitutes Nb5+ to introduce shallow 4d acceptor states that mediate charge separation, while La3+ substitutes Ca2+, compensates for aliovalent charge imbalance, and modulates local lattice distortions and oxygen vacancy formation. This codoping strategy enhances charge carrier lifetime and separation efficiency through a trap-mediated mechanism. The observed volcano-shaped activity trend highlights a narrow compositional window, where electronic and structural factors are optimally balanced. These findings establish a mechanistic foundation for defect engineering in layered perovskites and offer a pathway for the rational design of photocatalysts.Room‐Temperature Collective Quantum Emission Mediated by Wannier–Mott Excitons in CsPbBr 3 Nanowires
Small Science Wiley (2025) e202500400