Gain enhancement of perovskite nanosheets by a patterned waveguide: excitation and temperature dependence of gain saturation

Light: Science & Applications Springer Nature 12:1 (2023) 285

Authors:

Inhong Kim, Ga Eul Choi, Ming Mei, Min Woo Kim, Minju Kim, Young Woo Kwon, Tae-In Jeong, Seungchul Kim, Suck Won Hong, Kwangseuk Kyhm, Robert A Taylor

Abstract:

Optical gain enhancement of two-dimensional CsPbBr3 nanosheets was studied when the amplified spontaneous emission is guided by a patterned structure of polyurethane-acrylate. Given the uncertainties and pitfalls in retrieving a gain coefficient from the variable stripe length method, a gain contour g(ℏω, x) was obtained in the plane of spectrum energy (ω) and stripe length (x), whereby an average gain was obtained, and gain saturation was analysed. Excitation and temperature dependence of the gain contour show that the waveguide enhances both gain and thermal stability due to the increased optical confinement and heat dissipation, and the gain origins were attributed to the two-dimensional excitons and the localized states.

Piezoelectric energy harvesting using solar radiation pressure enhanced by surface plasmons at visible to near-infrared wavelengths

Solar RRL Wiley 7:10 (2023) 2300039

Authors:

Jae-Hoon Ryu, Ha Young Lee, Sung-Hyun Kim, Jeong-Yeon Lee, Jun-Hyeon Jang, Hyung Soo Ahn, Sun-Lyeong Hwang, Robert A Taylor, Dong Han Ha, Sam Nyung Yi

Abstract:

A light-pressure electric generator (LPEG) device, which harvests piezoelectric energy using solar radiation enhanced by surface plasmons (SPs), is demonstrated. The design of the device is motivated by the need to drastically increase the power output of existing piezoelectric devices based on SP resonance. The solar radiation pressure can be used as an energy source by employing an indium tin oxide (ITO)/Ag double layer to excite the SPs in the near-infrared (NIR) and visible light regions. The LPEG with the ITO layer generates an open-circuit voltage of 295 mV, a short-circuit current of 3.78 μA, and a power of 532.3 μW cm−2 under a solar simulator. The power of the LPEG device incorporating the ITO layer increased by 38% compared to the device without the ITO layer. The effect of the ITO layer on the electrical output of the LPEG was analyzed in detail by measuring the electrical output when visible and NIR lights are incident on the device using optical bandpass filters. In addition, finite-difference time-domain simulation confirmed that the pressure of the incident light can be further amplified by the ITO/Ag double layer. Finally, the energy harvested from the LPEG was stored in capacitors to successfully illuminate red light-emitting diodes.

Three-photon excitation of InGaN quantum dots

Physical Review Letters American Physical Society 130:8 (2023) 083602

Authors:

Viviana Villafane, Bianca Scaparra, Manuel Rieger, Tongtong Zhu, Robert Anthony Taylor

Abstract:

We demonstrate that semiconductor quantum dots can be excited efficiently in a resonant three-photon process, whilst resonant two-photon excitation is highly suppressed. Time-dependent Floquet theory is used to quantify the strength of the multi-photon processes and model the experimental results. The efficiency of these transitions can be drawn directly from parity considerations in the electron and hole wavefunctions in semiconductor quantum dots. Finally, we exploit this technique to probe intrinsic properties of InGaN quantum dots. In contrast to non-resonant excitation, slow relaxation of charge carriers is avoided which allows us to measure directly the radiative lifetime of the lowest energy exciton states. Since the emission energy is detuned far from the resonant driving laser field, polarization filtering is not required and emission with a greater degree of linear polarization is observed compared to non-resonant excitation.

Reducing nonradiative losses in perovskite LEDs through atomic layer deposition of Al2O3 on the hole-injection contact

ACS Nano American Chemical Society 17:4 (2023) 3289-3300

Authors:

Emil Dyrvik, Jonathan Warby, Melissa McCarthy, Alexandra Ramadan, Karl-Augustin Zaininger, Andreas Lauritzen, Suhas Mahesh, Robert Taylor, Henry Snaith

Abstract:

Halide perovskite light-emitting diodes (PeLEDs) exhibit great potential for use in next-generation display technologies. However, scale-up will be challenging due to the requirement of very thin transport layers for high efficiencies, which often present spatial inhomogeneities from improper wetting and drying during solution processing. Here, we show how a thin Al2O3 layer grown by atomic layer deposition can be used to preferentially cover regions of imperfect hole transport layer deposition and form an intermixed composite with the organic transport layer, allowing hole conduction and injection to persist through the organic hole transporter. This has the dual effect of reducing nonradiative recombination at the heterojunction and improving carrier selectivity, which we infer to be due to the inhibition of direct contact between the indium tin oxide and perovskite layers. We observe an immediate improvement in electroluminescent external quantum efficiency in our p-i-n LEDs from an average of 9.8% to 13.5%, with a champion efficiency of 15.0%. The technique uses industrially available equipment and can readily be scaled up to larger areas and incorporated in other applications such as thin-film photovoltaic cells.

Optical gain of vertically coupled Cd0.6Zn0.4Te/ZnTe quantum dots

Nanomaterials MDPI 13:4 (2023) 716

Authors:

Ming Mei, Minju Kim, Minwoo Kim, Inhong Kim, Hong Seok Lee, Robert A Taylor, Kwangseuk Kyhm

Abstract:

The optical modal gain of Cd0.6Zn0.4Te/ZnTe double quantum dots was measured using a variable stripe length method, where large and small quantum dots are separated with a ZnTe layer. With a large (~18 nm) separation layer thickness of ZnTe, two gain spectra were observed, which correspond to the confined exciton levels of the large and small quantum dots, respectively. With a small (~6 nm) separation layer thickness of ZnTe, a merged single gain spectrum was observed. This can be attributed to a coupled state between large and small quantum dots. Because the density of large quantum dots (4 × 1010 cm−2) is twice the density of small quantum dots (2 × 1010 cm−2), the density of the coupled quantum dots is determined by that of small quantum dots. As a result, we found that the peak gain (123.9 ± 9.2 cm−1) with the 6 nm separation layer is comparable to that (125.2 ± 29.2 cm−1) of the small quantum dots with the 18 nm separation layer.