Electrolyte-assisted polarization leading to enhanced charge separation and solar-to-hydrogen conversion efficiency of seawater splitting

Nature Catalysis Springer Nature 7:1 (2024) 77-88

Authors:

Yiyang Li, Hui Zhou, Songhua Cai, Dharmalingam Prabhakaran, Wentian Niu, Alexander Large, Georg Held, Robert A Taylor, Xin-Ping Wu, Shik Chi Edman Tsang

Abstract:

<jats:title>Abstract</jats:title><jats:p>Photocatalytic splitting of seawater for hydrogen evolution has attracted a great deal of attention in recent years. However, the poor energy conversion efficiency and stability of photocatalysts in a salty environment have greatly hindered further applications of this technology. Moreover, the effects of electrolytes in seawater remain controversial. Here we present electrolyte-assisted charge polarization over an N-doped TiO<jats:sub>2</jats:sub> photocatalyst, which demonstrates the stoichiometric evolution of H<jats:sub>2</jats:sub> and O<jats:sub>2</jats:sub> from the thermo-assisted photocatalytic splitting of seawater. Our extensive characterizations and computational studies show that ionic species in seawater can selectively adsorb on photo-polarized facets of the opposite charge, which can prolong the charge-carrier lifetime by a factor of five, leading to an overall energy conversion efficiency of 15.9 ± 0.4% at 270 °C. Using a light-concentrated furnace, a steady hydrogen evolution rate of 40 mmol g<jats:sup>−1</jats:sup> h<jats:sup>−1</jats:sup> is demonstrated, which is of the same order of magnitude as laboratory-scale electrolysers.</jats:p>

Stability of Mixed Lead Halide Perovskite Films Encapsulated in Cyclic Olefin Copolymer at Room and Cryogenic Temperatures.

The journal of physical chemistry letters American Chemical Society (ACS) 14:50 (2023) 11333-11341

Authors:

Mutibah Alanazi, Ashley Marshall, Shaoni Kar, Yincheng Liu, Jinwoo Kim, Henry J Snaith, Robert A Taylor, Tristan Farrow

Abstract:

Lead Mixed Halide Perovskites (LMHPs), CsPbBrI<sub>2</sub>, have attracted significant interest as promising candidates for wide bandgap absorber layers in tandem solar cells due to their relative stability and red-light emission with a bandgap ∼1.7 eV. However, these materials segregate into Br-rich and I-rich domains upon continuous illumination, affecting their optical properties and compromising the operational stability of devices. Herein, we track the microscopic processes occurring during halide segregation by using combined spectroscopic measurements at room and cryogenic temperatures. We also evaluate a passivation strategy to mitigate the halide migration of Br/I ions in the films by overcoating with cyclic olefin copolymer (COC). Our results explain the correlation between grain size, intensity dependencies, phase segregation, activation energy barrier, and their influence on photoinduced carrier lifetimes. Importantly, COC treatment increases the lifetime charge carriers in mixed halide thin films, improving efficient charge transport in perovskite solar cell applications.

Ultranarrow line width room-temperature single-photon source from perovskite quantum dot embedded in optical microcavity

Nano Letters American Chemical Society 23:23 (2023) 10667-10673

Authors:

tristan Farrow, Robert Taylor

Abstract:

Ultranarrow bandwidth single-photon sources operating at room-temperature are of vital importance for viable optical quantum technologies at scale, including quantum key distribution, cloud-based quantum information processing networks, and quantum metrology. Here we show a room-temperature ultranarrow bandwidth single-photon source generating single-mode photons at a rate of 5 MHz based on an inorganic CsPbI3 perovskite quantum dot embedded in a tunable open-access optical microcavity. When coupled to an optical cavity mode, the quantum dot room-temperature emission becomes single-mode, and the spectrum narrows down to just ∼1 nm. The low numerical aperture of the optical cavities enables efficient collection of high-purity single-mode single-photon emission at room-temperature, offering promising performance for photonic and quantum technology applications. We measure 94% pure single-photon emission in a single-mode under pulsed and continuous-wave (CW) excitation.

Gain enhancement of perovskite nanosheets by a patterned waveguide: excitation and temperature dependence of gain saturation

Light: Science & Applications Springer Nature 12:1 (2023) 285

Authors:

Inhong Kim, Ga Eul Choi, Ming Mei, Min Woo Kim, Minju Kim, Young Woo Kwon, Tae-In Jeong, Seungchul Kim, Suck Won Hong, Kwangseuk Kyhm, Robert A Taylor

Abstract:

Optical gain enhancement of two-dimensional CsPbBr3 nanosheets was studied when the amplified spontaneous emission is guided by a patterned structure of polyurethane-acrylate. Given the uncertainties and pitfalls in retrieving a gain coefficient from the variable stripe length method, a gain contour g(ℏω, x) was obtained in the plane of spectrum energy (ω) and stripe length (x), whereby an average gain was obtained, and gain saturation was analysed. Excitation and temperature dependence of the gain contour show that the waveguide enhances both gain and thermal stability due to the increased optical confinement and heat dissipation, and the gain origins were attributed to the two-dimensional excitons and the localized states.

Boosting Biomolecular Switch Efficiency With Quantum Coherence

(2023)

Authors:

Mattheus Burkhard, Onur Pusuluk, Tristan Farrow