Simulating molecules on a cloud-based 5-qubit IBM-Q universal quantum computer

Communications Physics Nature Research 20 (2021)

Authors:

S. Leontica, F. Tennie, T. Farrow*

Abstract:

Simulating the behaviour of complex quantum systems is impossible on classical supercomputers due to the exponential scaling of the number of quantum states with the number of particles in the simulated system. Quantum computers aim to break through this limit by using one quantum system to simulate another quantum system. Although in their infancy, they are a promising tool for applied fields seeking to simulate quantum interactions in complex atomic and molecular structures. Here we show an efficient technique for transpiling the unitary evolution of quantum systems into the language of universal quantum computation using the IBM quantum computer and show that it is a viable tool for compiling near-term quantum simulation algorithms. We develop code that decomposes arbitrary 3-qubit gates and implement it in a quantum simulation first for a linear ordered chain to highlight the generality of the approach, and second, for a complex molecule. Here we choose the Fenna-Matthews-Olsen (FMO) photosynthetic protein because it has a well characterised Hamiltonian and presents a complex dissipative system coupled to a noisy environment that helps to improve the efficiency of energy transport. The method can be implemented in a broad range of molecular and other simulation settings.

Two-photon Laser-written Photoalignment Layers for Patterning Liquid Crystalline Conjugated Polymer Orientation

Advanced Functional Materials Wiley (2020)

Authors:

STEPHEN MORRIS, Patrick SALTER, Robert TAYLOR, Steve ELSTON, Donal BRADLEY

Excitation and temperature dependence of the broad gain spectrum in GaAs/AlGaAs quantum rings

Applied Physics Letters AIP Publishing 117:21 (2020) 213101

Authors:

Juyeong Jang, Seunghwan Lee, Minju Kim, Sunwoo Woo, Inhong Kim, Jihoon Kyhm, Jindong Song, Robert Taylor, Kwangseuk Kyhm

Abstract:

We have employed a variable stripe length method in order to measure the optical gain of GaAs/AlGaAs quantum rings. Although the large lateral diameter of quantum rings (∼ 50 nm) with a few nm size distribution is expected to cause a small spectral inhomogeneity (∼ 1 %), a broad gain width (∼ 300 meV) was observed. This result was attributed to a variation of the vertical heights and variations in localized states that exhibit crescent shaped wavefunctions, whereby the energy levels are distributed over a broad spectral range. When the excitation intensity is decreased, irregular peaks appear in the gain spectrum gradually. Similar phenomena were also observed with increased temperature. We conclude that excited carriers in quantum rings are distributed stochastically at various localized states, and the population inversion is sensitive to excitation intensity and temperature.

A measurable physical theory of hyper-correlations beyond quantum mechanics

Physica Scripta IOP Publishing 96:1 (2020) 015006

Authors:

Tristan Farrow, Vlatko Vedral, Wonmin Son

Abstract:

whose non-local character exceeds the bounds allowed by quantum mechanics. Motivated by our observation that an extension of the Schroedinger equation with non-linear terms is directly linked to a relaxation of Born's rule, an axiom of quantum mechanics, we derive a physical theory that accounts for such hyper-correlated states and modifies Born's rule. We model correlated particles with a generalized probability theory whose dynamics are described with a non-linear version of Schr\"odinger's equation and demonstrate how that deviates from the standard formulation of quantum mechanics in experimental probability-prediction. We show also that the violation of the Clauser-Horn-Shimony-Holt inequality, the amount of non-locality, is proportional to the degree of non-linearity, which can be experimentally tested.

Highly efficient photoluminescence and lasing from hydroxide coated fully inorganic perovskite micro/nano-rods

Advanced Optical Materials Wiley 8:23 (2020) 2001235

Authors:

Guanhua Ying, A Jana, Vitaly Osokin, Youngsin Park, Robert Taylor, Tristan Farrow

Abstract:

The effect of surface passivation on the photoluminescence (PL) emitted by CsPbBr3 micro/nano‐rods coated with Pb(OH)2 is investigated, where a high quantum yield and excellent stability for the emission are found. The CsPbBr3/Pb(OH)2 rods generally present a peak that is blue shifted compared to that seen in rods without a hydroxide cladding at low temperatures. By increasing the temperature, it is further shown that the passivated surface states are very robust against thermal effects and that the PL peak intensity only drops by a factor of 1.5. Localized stimulated emission at defect states found within larger rods is also demonstrated, clarified by spatially resolved confocal PL mapping along the length of the rods. The diffusion parameter of the carrier density distribution is measured to be 5.70 µm for the sky‐blue emission, whereas for the defect lasing site it is found to be smaller than this excitation spot size.