Rule 54: exactly solvable model of nonequilibrium statistical mechanics

Journal of Statistical Mechanics: Theory and Experiment IOP Publishing 2021 (2021) 074001

Authors:

Berislav Buca, Katja Klobas, Tomaž Prosen

Abstract:

We review recent results on an exactly solvable model of nonequilibrium statistical mechanics, specifically the classical rule 54 reversible cellular automaton and some of its quantum extensions. We discuss the exact microscopic description of nonequilibrium dynamics as well as the equilibrium and nonequilibrium stationary states. This allows us to obtain a rigorous handle on the corresponding emergent hydrodynamic description, which is treated as well. Specifically, we focus on two different paradigms of rule 54 dynamics. Firstly, we consider a finite chain driven by stochastic boundaries, where we provide exact matrix product descriptions of the nonequilibrium steady state, most relevant decay modes, as well as the eigenvector of the tilted Markov chain yielding exact large deviations for a broad class of local and extensive observables. Secondly, we treat the explicit dynamics of macro-states on an infinite lattice and discuss exact closed form results for dynamical structure factor, multi-time-correlation functions and inhomogeneous quenches. Remarkably, these results prove that the model, despite its simplicity, behaves like a regular fluid with coexistence of ballistic (sound) and diffusive (heat) transport. Finally, we briefly discuss quantum interpretation of rule 54 dynamics and explicit results on dynamical spreading of local operators and operator entanglement.

Self-induced entanglement resonance in a disordered Bose-Fermi mixture

(2021)

Authors:

Juan José Mendoza-Arenas, Berislav Buča

A Quantum Inspired Approach to Exploit Turbulence Structures

(2021)

Authors:

Nikita Gourianov, Michael Lubasch, Sergey Dolgov, Quincy Y van den Berg, Hessam Babaee, Peyman Givi, Martin Kiffner, Dieter Jaksch

Tuning Metastable Light-Induced Superconductivity in K3C60with a Hybrid CO2-Ti: Sapphire Laser

2021 Conference on Lasers and Electro-Optics, CLEO 2021 - Proceedings (2021)

Authors:

M Budden, T Gebert, M Buzzi, G Jotzu, E Wang, T Matsuyama, G Meier, Y Laplace, D Pontiroli, M Ricco, F Schlawin, D Jaksch, A Cavalleri

Abstract:

High power mid-infrared light pulses of tunable pulse length were generated to stabilize light-induced superconductivity in K3C60 for nanoseconds. This metastable state showed a vanishing electrical resistance at five times the material's equilibrium critical temperature.

Evidence for metastable photo-induced superconductivity in K3C60

Nature Physics Springer Nature 17:5 (2021) 611-618

Authors:

M Budden, T Gebert, M Buzzi, G Jotzu, E Wang, T Matsuyama, G Meier, Y Laplace, D Pontiroli, M Ricco, F Schlawin, D Jaksch, A Cavalleri

Abstract:

Excitation of high-Tc cuprates and certain organic superconductors with intense far-infrared optical pulses has been shown to create non-equilibrium states with optical properties that are consistent with transient high-temperature superconductivity. These non-equilibrium phases have been generated using femtosecond drives, and have been observed to disappear immediately after excitation, which is evidence of states that lack intrinsic rigidity. Here we make use of a new optical device to drive metallic K3C60 with mid-infrared pulses of tunable duration, ranging between one picosecond and one nanosecond. The same superconducting-like optical properties observed over short time windows for femtosecond excitation are shown here to become metastable under sustained optical driving, with lifetimes in excess of ten nanoseconds. Direct electrical probing, which becomes possible at these timescales, yields a vanishingly small resistance with the same relaxation time as that estimated by terahertz conductivity. We provide a theoretical description of the dynamics after excitation, and justify the observed slow relaxation by considering randomization of the order-parameter phase as the rate-limiting process that determines the decay of the light-induced superconductor.