Optical excitation of zigzag carbon nanotubes with photons guided in nanofibers

Physical Review B - Condensed Matter and Materials Physics 85:19 (2012)

Authors:

S Broadfoot, U Dorner, D Jaksch

Abstract:

We consider the excitation of electrons in semiconducting carbon nanotubes by photons from the evanescent field created by a subwavelength-diameter optical fiber. The strongly changing evanescent field of such nanofibers requires dropping the dipole approximation. We show that this leads to novel effects, especially a high dependence of the photon absorption on the relative orientation and geometry of the nanotube-nanofiber setup in the optical and near-infrared domain. In particular, we calculate photon absorption probabilities for a straight nanotube and nanofiber depending on their relative angle. Nanotubes orthogonal to the fiber are found to perform much better than parallel nanotubes when they are short. As the nanotube gets longer the absorption of parallel nanotubes is found to exceed the orthogonal nanotubes and approach 100% for extremely long nanotubes. In addition, we show that if the nanotube is wrapped around the fiber in an appropriate way the absorption is enhanced. We find that optical and near-infrared photons could be converted to excitations with efficiencies that may exceed 90%. This may provide opportunities for future photodetectors and we discuss possible setups. © 2012 American Physical Society.

Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond

Nature Photonics 6:1 (2012) 41-44

Authors:

KC Lee, BJ Sussman, MR Sprague, P Michelberger, KF Reim, J Nunn, NK Langford, PJ Bustard, D Jaksch, IA Walmsley

Abstract:

The nature of the transition between the familiar classical, macroscopic world and the quantum, microscopic one continues to be poorly understood. Expanding the regime of observable quantum behaviour to large-scale objects is therefore an exciting open problem. In macroscopic systems of interacting particles, rapid thermalization usually destroys any quantum coherence before it can be measured or used at room temperature. Here, we demonstrate quantum processing in the vibrational modes of a macroscopic diamond sample under ambient conditions. Using ultrafast Raman scattering, we create an extended, highly non-classical state in the optical phonon modes of bulk diamond. Direct measurement of phonon coherence and correlations establishes the non-classical nature of the crystal dynamics. These results show that optical phonons in diamond provide a unique opportunity for the study of large-scale quantum behaviour, and highlight the potential for diamond as a micro-photonic quantum processor capable of operating at terahertz rates.

Dissipative quantum-light-field engineering

PHYSICAL REVIEW A 85:2 (2012) ARTN 023812

Authors:

Martin Kiffner, Uwe Dorner, Dieter Jaksch

Entangling the Motion of Diamonds at Room Temperature

2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) (2012)

Authors:

MR Sprague, KC Lee, BJ Sussman, J Nunn, NK Langford, X-M Jin, T Champion, P Michelberger, KF Reim, D England, D Jaksch, IA Walmsley

Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond

Nature Photonics (2011)

Authors:

KC Lee, BJ Sussman, MR Sprague, P Michelberger, KF Reim, J Nunn, NK Langford, PJ Bustard, D Jaksch, IA Walmsley

Abstract:

The nature of the transition between the familiar classical, macroscopic world and the quantum, microscopic one continues to be poorly understood. Expanding the regime of observable quantum behaviour to large-scale objects is therefore an exciting open problem. In macroscopic systems of interacting particles, rapid thermalization usually destroys any quantum coherence before it can be measured or used at room temperature. Here, we demonstrate quantum processing in the vibrational modes of a macroscopic diamond sample under ambient conditions. Using ultrafast Raman scattering, we create an extended, highly non-classical state in the optical phonon modes of bulk diamond. Direct measurement of phonon coherence and correlations establishes the non-classical nature of the crystal dynamics. These results show that optical phonons in diamond provide a unique opportunity for the study of large-scale quantum behaviour, and highlight the potential for diamond as a micro-photonic quantum processor capable of operating at terahertz rates.