Solving search problems by strongly simulating quantum circuits
ArXiv 1209.601 (2012)
Abstract:
Simulating quantum circuits using classical computers lets us analyse the inner workings of quantum algorithms. The most complete type of simulation, strong simulation, is believed to be generally inefficient. Nevertheless, several efficient strong simulation techniques are known for restricted families of quantum circuits and we develop an additional technique in this article. Further, we show that strong simulation algorithms perform another fundamental task: solving search problems. Efficient strong simulation techniques allow solutions to a class of search problems to be counted and found efficiently. This enhances the utility of strong simulation methods, known or yet to be discovered, and extends the class of search problems known to be efficiently simulable. Relating strong simulation to search problems also bounds the computational power of efficiently strongly simulable circuits; if they could solve all problems in $\mathrm{P}$ this would imply the collapse of the complexity hierarchy $\mathrm{P} \subseteq \mathrm{NP} \subseteq # \mathrm{P}$.Quantum Information, Computation and Communication
Cambridge University Press (CUP), 2012
A note on symmetry reductions of the Lindblad equation: transport in constrained open spin chains
New Journal of Physics IOP Publishing 14:7 (2012) 073007
Re-entrance and entanglement in the one-dimensional Bose-Hubbard model
ArXiv 1206.0222 (2012)
Abstract:
Re-entrance is a novel feature where the phase boundaries of a system exhibit a succession of transitions between two phases A and B, like A-B-A-B, when just one parameter is varied monotonically. This type of re-entrance is displayed by the 1D Bose Hubbard model between its Mott insulator (MI) and superfluid phase as the hopping amplitude is increased from zero. Here we analyse this counter-intuitive phenomenon directly in the thermodynamic limit by utilizing the infinite time-evolving block decimation algorithm to variationally minimize an infinite matrix product state (MPS) parameterized by a matrix size chi. Exploiting the direct restriction on the half-chain entanglement imposed by fixing chi, we determined that re-entrance in the MI lobes only emerges in this approximate when chi >= 8. This entanglement threshold is found to be coincident with the ability an infinite MPS to be simultaneously particle-number symmetric and capture the kinetic energy carried by particle-hole excitations above the MI. Focussing on the tip of the MI lobe we then applied, for the first time, a general finite-entanglement scaling analysis of the infinite order Kosterlitz-Thouless critical point located there. By analysing chi's up to a very moderate chi = 70 we obtained an estimate of the KT transition as t_KT = 0.30 +/- 0.01, demonstrating the how a finite-entanglement approach can provide not only qualitative insight but also quantitatively accurate predictions.Optical excitation of zigzag carbon nanotubes with photons guided in nanofibers
Physical Review B - Condensed Matter and Materials Physics 85:19 (2012)