A consistent retrieval analysis of 10 hot Jupiters observed in transmission

Astrophysical Journal American Astronomical Society 834:1 (2017) 50

Authors:

JK Barstow, Suzanne Aigrain, Patrick Irwin, DK Sing

Abstract:

We present a consistent optimal estimation retrieval analysis of 10 hot Jupiter exoplanets, each with transmission spectral data spanning the visible to near-infrared wavelength range. Using the NEMESIS radiative transfer and retrieval tool, we calculate a range of possible atmospheric states for WASP-6b, WASP-12b, WASP-17b, WASP-19b, WASP-31b, WASP-39b, HD 189733b, HD 209458b, HAT-P-1b, and HAT-P-12b. We find that the spectra of all 10 planets are consistent with the presence of some atmospheric aerosol; WASP-6b, WASP-12b, WASP-17b, WASP-19b, HD 189733b, and HAT-P-12b are all fit best by Rayleigh scattering aerosols, whereas WASP-31b, WASP-39b and HD 209458b are better represented by a gray cloud model. HAT-P-1b has solutions that fall into both categories. WASP-6b, HAT-P-12b, HD 189733b, and WASP-12b must have aerosol extending to low atmospheric pressures (below 0.1 mbar). In general, planets with equilibrium temperatures between 1300 and 1700 K are best represented by deeper, gray cloud layers, whereas cooler or hotter planets are better fit using high Rayleigh scattering aerosol. We find little evidence for the presence of molecular absorbers other than H2O. Retrieval methods can provide a consistent picture across a range of hot Jupiter atmospheres with existing data, and will be a powerful tool for the interpretation of James Webb Space Telescope observations.

Climatological variations in Titan's atmospheric chemistry mapped using ALMA

ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY 254 (2017)

Authors:

Martin Cordiner, Conor Nixon, Steven Charnley, Nick Teanby, Zbigniew Kisiel, Pat Irwin, Maureen Palmer, James Lai, Xander Thelen, Veronique Vuitton

Exoplanet atmospheres with EChO: spectral retrievals using EChOSim

Chapter in EChO - Exoplanet Characterisation Observatory, Springer Nature (2017) 109-125

Authors:

JK Barstow, Neil E Bowles, S Aigrain, LN Fletcher, PGJ Irwin, R Varley, E Pascale

The Long wave (11–16 μm) spectrograph for the EChO M3 Mission Candidate study

Chapter in EChO - Exoplanet Characterisation Observatory, Springer Nature (2017) 437-447

Authors:

NE Bowles, M Tecza, JK Barstow, JM Temple, PGJ Irwin, LN Fletcher, S Calcutt, J Hurley, M Ferlet, D Freeman

Seasonal exposure of carbon dioxide ice on the nucleus of comet 67P/Churyumov-Gerasimenko.

Science American Association for the Advancement of Science 354:6319 (2016) 1563-1566

Authors:

Gianrico Filacchione, Andrea Raponi, Fabrizio Capaccioni, Mauro Ciarniello, Federico Tosi, Maria T Capria, Maria C De Sanctis, Alessandra Migliorini, Giuseppe Piccioni, Priscilla Cerroni, Maria A Barucci, Sonia Fornasier, Bernard Schmitt, Eric Quirico, Stéphane Erard, Dominique Bockelee-Morvan, Cedric Leyrat, Gabriele Arnold, Vito Mennella, Eleonora Ammannito, Giancarlo Bellucci, Johannes Benkhoff, JP Bibring, Armando Blanco, Maria I Blecka, Robert Carlson, Ulm Carsenty, Luigi Colangeli, Michel Combes, Michael Combi, Jacques Crovisier, Pierre Drossart, Thérèse Encrenaz, Costanzo Federico, Uwe Fink, Sergio Fonti, Marcello Fulchignoni, Wing-Huen Ip, Patrick Irwin, Robert Jaumann, Ekkehard Kuehrt, Yves Langevin, Gianfranco Magni, Thomas McCord, Ljuba Moroz, Stefano Mottola, Ernesto Palomba, Ulrich Schade, Karin Stephan, Fredric Taylor

Abstract:

Carbon dioxide is one of the most abundant species in cometary nuclei, but due to its high volatility CO2 ice is generally only found beneath the surface. We report the infrared spectroscopic identification of a CO2 ice-rich surface area, located in the Anhur region of comet 67P/Churyumov-Gerasimenko. Spectral modeling shows that about 0.1% of the 80×60 m area is CO2 ice. This exposed ice was observed a short time after exiting from local winter; following the increased illumination, the CO2 ice completely disappeared over about three weeks. We estimate the mass of the sublimated CO2 ice and the depth of the surface eroded layer. The presence of CO2 ice is interpreted as the result of the extreme seasonal changes induced by the rotation and orbit of the comet.